Advertisement

Accounting for Possibilities in Decision Making

  • Gregor Betz
Chapter
Part of the Logic, Argumentation & Reasoning book series (LARI, volume 10)

Abstract

Intended as a practical guide for decision analysts, this chapter provides an introduction to reasoning under great uncertainty. It seeks to incorporate standard methods of risk analysis in a broader argumentative framework by re-interpreting them as specific (consequentialist) arguments that may inform a policy debate—side by side along further (possibly non-consequentialist) arguments which standard economic analysis does not account for. The first part of the chapter reviews arguments that can be advanced in a policy debate despite deep uncertainty about policy outcomes, i.e. arguments which assume that uncertainties surrounding policy outcomes cannot be (probabilistically) quantified. The second part of the chapter discusses the epistemic challenge of reasoning under great uncertainty, which consists in identifying all possible outcomes of the alternative policy options. It is argued that our possibilistic foreknowledge should be cast in nuanced terms and that future surprises—triggered by major flaws in one’s possibilistic outlook—should be anticipated in policy deliberation.

Keywords

Possibility Epistemic possibility Real possibility Modal epistemology Ambiguity Ignorance Deep uncertainty Knightian uncertainty Probabilism Expected utility Worst case Maximin Precautinary principle Robust decision analysis Risk imposition Surprise Unknown unknowns 

Recommended Readings

  1. Betz, G. (2010a). What’s the worst case? The methodology of possibilistic prediction. Analyse und Kritik, 32, 87–106.CrossRefGoogle Scholar
  2. Etner, J., Jeleva, M., & Tallon, J.-M. (2012a). Decision theory under ambiguity. Journal of Economic Surveys, 26, 234–270.CrossRefGoogle Scholar
  3. Lempert, R. J., Popper, S. W., & Bankes, S. C. (2003a). Shaping the next one hundred years: New methods for quantitative, long-term policy analysis. Santa Monica: RAND.Google Scholar
  4. Resnik, M. D. (1987a). Choices: An introduction to decision theory. Minneapolis: University of Minnesota Press.Google Scholar

References

  1. Basili, M., & Zappia, C. (2009). Shackle and modern decision theory. Metroeconomica, 60, 245–282.CrossRefGoogle Scholar
  2. Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference. Journal for the Royal Statistical Society. Series B (Methodological), 41, 113–147.Google Scholar
  3. Betz, G. (2010b). What’s the worst case? The methodology of possibilistic prediction. Analyse und Kritik, 32, 87–106.CrossRefGoogle Scholar
  4. Betz, G. (2011). Prediction. In I. C. Jarvie & J. Zamora-Bonilla (Eds.), The sage handbook of the philosophy of social sciences (pp. 647–664). Thousand Oaks: SAGE Publications.Google Scholar
  5. Betz, G. (2015). Are climate models credible worlds? Prospects and limitations of possibilistic climate prediction. European Journal for Philosophy of Science, 5, 191–215.CrossRefGoogle Scholar
  6. Blaizot, J-P., Iliopoulos, J., Madsen, J., Ross, G. G., Sonderegger, P., Specht, H. J. (2003). Study of potentially dangerous events during heavy-ion collisions at the LHC: Report of the LHC Safety Study Group. https://cds.cern.ch/record/613175/files/CERN-2003-001.pdf. Accessed 12 Aug 2015.
  7. Briggs, R. (2014). Normative theories of rational choice: Expected utility. The Stanford Encyclopedia of Philosophy. http://plato.stanford.edu/entries/rationality-normative-utility/.
  8. Brun, G., & Betz, G. (2016). Analysing practical argumentation. In S. O. Hansson & G. Hirsch Hadorn (Eds.), The argumentative turn in policy analysis. Reasoning about uncertainty (pp. 39–77). Cham: Springer. doi: 10.1007/978-3-319-30549-3_3.
  9. Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., Merrifield, M. A., et al. (2013). Sea level change. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change 2013: The physical science basis contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change (pp. 1137–1216). Cambridge: Cambridge University Press.Google Scholar
  10. Clarke, L. B. (2006). Worst cases: Terror and catastrophe in the popular imagination. Chicago: University of Chicago Press.Google Scholar
  11. Doorn, N. (2016). Reasoning about uncertainty in flood risk governance. In S. O. Hansson & G. Hirsch Hadorn (Eds.), The argumentative turn in policy analysis. Reasoning about uncertainty (pp. 245–263). Cham: Springer. doi: 10.1007/978-3-319-30549-3_10.
  12. Egan, A., & Weatherson, B. (2009). Epistemic modality. Oxford: Oxford University Press.Google Scholar
  13. Elliott, K. C. (2010). Geoengineering and the precautionary principle. International Journal of Applied Philosophy, 24, 237–253.CrossRefGoogle Scholar
  14. Elliott, K. C. (2016). Climate geoengineering. In S. O. Hansson & G. Hirsch Hadorn (Eds.), The argumentative turn in policy analysis. Reasoning about uncertainty (pp. 305–324). Cham: Springer. doi: 10.1007/978-3-319-30549-3_13.
  15. Ellis, J., Giudice, G., Mangano, M., Tkachev, I., & Wiedemann, U. (2008). Review of the safety of LHC collisions. http://www.cern.ch/lsag/LSAG-Report.pdf. Accessed 10 Nov 2012.
  16. Ellsberg, D. (1961). Risk, ambiguity, and the savage axioms. Quarterly Journal of Economics, 75, 643–669.CrossRefGoogle Scholar
  17. Etner, J., Jeleva, M., & Tallon, J.-M. (2012b). Decision theory under ambiguity. Journal of Economic Surveys, 26, 234–270.CrossRefGoogle Scholar
  18. European Commission. (2011). Commission staff working paper. Impact assessment. accompanying the document communication from the commission to the council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions. Energy Roadmap 2050. COM(2011)885. http://ec.europa.eu/smart-regulation/impact/ia_carried_out/docs/ia_2011/sec_2011_1565_en.pdf. Accessed 12 Aug 2015.
  19. Gardiner, S. M. (2006). A core precautionary principle. The Journal of Political Philosophy, 14, 33–60.CrossRefGoogle Scholar
  20. Gilboa, I., Postlewaite, A., & Schmeidler, D. (2009). Is it always rational to satisfy Savage’s axioms? Economics and Philosophy, 25(Special Issue 03): 285–296.Google Scholar
  21. Hartmut, G., Kokott, J., Kulessa, M., Luther, J., Nuscheler, F., Sauerborn, R., Schellnhuber, H-J., Schubert, R., & Schulze, E-D. (2003). World in transition: Towards sustainable energy systems. German Advisory Council on Global Change Flagship Report. http://www.wbgu.de/fileadmin/templates/dateien/veroeffentlichungen/hauptgutachten/jg2003/wbgu_jg2003_engl.pdf. Accessed 12 Aug 2015.
  22. Hansen, J., Sato, M., Russell, G., & Kharecha, P. (2013). Climate sensitivity, sea level and atmospheric carbon dioxide. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 371 (20120294).Google Scholar
  23. Hansson, S. O. (1997). The limits of precaution. Foundations of Science, 1997, 293–306.CrossRefGoogle Scholar
  24. Hansson, S. O. (2001). The structure of values and norms. Cambridge studies in probability, induction, and decision theory. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  25. Hansson, S. O. (2003). Ethical criteria of risk acceptance. Erkenntnis, 59, 291–309.CrossRefGoogle Scholar
  26. Hansson, S. O. (2013). The ethics of risk: Ethical analysis in an uncertain world. New York: Palgrave Macmillan.CrossRefGoogle Scholar
  27. Hansson, S. O. (2016). Evaluating the uncertainties. In S. O. Hansson & G. Hirsch Hadorn (Eds.), The argumentative turn in policy analysis. Reasoning about uncertainty (pp. 79–104). Cham: Springer. doi: 10.1007/978-3-319-30549-3_4.
  28. Heal, G., & Millner, A. (2013). Uncertainty and decision in climate change economics. NBER working paper No. 18929. http://www.nber.org/papers/w18929.pdf. Accessed 12 Aug 2015.
  29. Jeffrey, R. (1965). The logic of decision. Chicago: University of Chicago Press.Google Scholar
  30. Jenkins, G. J., Murphy, J. M., Sexton, D. M. H., Lowe, J. A., Jones, P., & Kilsby, C. G. (2009). UK climate projections: Briefing report. Exeter: Met Office Hadley Centre.Google Scholar
  31. Lempert, R. J., Popper, S. W., & Bankes, S. C. (2002). Confronting surprise. Social Science Computer Review, 20, 420–440.CrossRefGoogle Scholar
  32. Lempert, R. J., Popper, S. W., & Bankes, S. C. (2003b). Shaping the next one hundred years: New methods for quantitative, long-term policy analysis. Santa Monica: RAND.Google Scholar
  33. Luce, R. D., & Raiffa, H. (1957). Games and decisions: Introduction and critical survey. New York: Wiley.Google Scholar
  34. Möller, N. (2016). Value uncertainty. In S. O. Hansson & G. Hirsch Hadorn (Eds.), The argumentative turn in policy analysis. Reasoning about uncertainty (pp. 105–133). Cham: Springer. doi: 10.1007/978-3-319-30549-3_5.
  35. Morgan, M. G. (2011). Certainty, uncertainty, and climate change. Climatic Change, 108, 707–721.CrossRefGoogle Scholar
  36. Morgan, M. G., Henrion, M., & Small, M. (1990). Uncertainty: A guide to dealing with uncertainty in quantitative risk and policy analysis. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  37. Müller, T. (2012). Branching in the landscape of possibilities. Synthese, 188, 41–65.CrossRefGoogle Scholar
  38. Neubersch, D., Held, H., & Otto, A. (2014). Operationalizing climate targets under learning: An application of cost-risk analysis. Climatic Change, 126, 305–318.CrossRefGoogle Scholar
  39. Nordhaus, W. D., & Boyer, J. (2000). Warming the world: Economic models of climate change. Cambridge, MA: MIT Press.Google Scholar
  40. O’Hagan, A., & Oakley, J. E. (2004). Probability is perfect, but we can’t elicit it perfectly. Reliability Engineering & System Safety, 85, 239–248.CrossRefGoogle Scholar
  41. Peterson, M. (2006). The precautionary principle is incoherent. Risk Analysis, 26, 595–601.CrossRefGoogle Scholar
  42. Rawls, J. (1971). A theory of justice. Cambridge: Harvard University Press.Google Scholar
  43. Rescher, N. (1984). The limits of science. Pittsburgh series in philosophy and history of science. Berkeley: University of California Press.Google Scholar
  44. Rescher, N. (2009). Ignorance: On the wider implications of deficient knowledge. Pittsburgh: University of Pittsburgh Press.Google Scholar
  45. Resnik, M. D. (1987b). Choices: An introduction to decision theory. Minneapolis: University of Minnesota Press.Google Scholar
  46. Savage, L. J. (1954). The foundation of statistics. New York: Wiley.Google Scholar
  47. Schefczyk, M. (2016). Financial markets: The stabilisation task. In S. O. Hansson & G. Hirsch Hadorn (Eds.), The argumentative turn in policy analysis. Reasoning about uncertainty (pp. 265–290). Cham: Springer. doi: 10.1007/978-3-319-30549-3_11.
  48. Schmidt, M. G. W., Lorenz, A., Held, H., & Kriegler, E. (2011). Climate targets under uncertainty: Challenges and remedies. Climatic Change, 104, 783–791.CrossRefGoogle Scholar
  49. Schneider, S. H. (2001). What is ’dangerous’ climate change? Nature, 411, 17–19.CrossRefGoogle Scholar
  50. Shrader-Frechette, K. (2016). Uncertainty analysis, nuclear waste, and million-year predictions. In S. O. Hansson & G. Hirsch Hadorn (Eds.), The argumentative turn in policy analysis. Reasoning about uncertainty (pp. 291–303). Cham: Springer. doi: 10.1007/978-3-319-30549-3_12.
  51. Steele, K. (2006). The precautionary principle: A new approach to public decision-making? Law, Probability, and Risk, 5, 19–31.CrossRefGoogle Scholar
  52. Sunstein, C. R. (2005). Laws of fear: Beyond the precautionary principle. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  53. Toth, F. L. (2003). Climate policy in light of climate science: The ICLIPS project. Climatic Change, 56, 7–36.CrossRefGoogle Scholar
  54. van Fraassen, B. C. (1989). Laws and symmetry. Oxford: Oxford University Press.CrossRefGoogle Scholar
  55. Williamson, J. (2010). In defence of objective Bayesianism. Oxford: Oxford University Press.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of PhilosophyKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations