Energy, Water, Climate and Cycles

  • Robert Ayres
Part of the The Frontiers Collection book series (FRONTCOLL)


The sun, which continuously energizes our solar system, radiates about 4 × 1014 terawatts (TW) of power, in all directions. Since a terawatt is a thousand Gigawatts (GW) and a million Megawatts (MW), that is an extremely large amount of power. The unit of power, terawatt (TW), is convenient because it is about the right size for discussions of energy use in the global economy. The Earth intercepts only a tiny fraction of that enormous solar output, viz. 174,260 TW, or 340.2 ± 0.1 W per square meter of the Earth’s silhouette or intercept surface.


Arctic Ocean Climate Sensitivity Gulf Stream Molecular Nitrogen Vertical Land Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ad hoc Study Group on Carbon Dioxide and Climate. 1979. In Carbon dioxide and climate: A scientific assessment, ed. Jule (Chair) Charney. Washington, DC: National Academy of Sciences (NAS).Google Scholar
  2. Ahrendts, Joachim. 1980. Reference States. Energy 5(5): 667–677.Google Scholar
  3. Allan, Richard P., C. Liu, N.G. Loeb, M.D. Palmer, M. Roberts, D. Smith, and P.-D. Vidale. 2014. Changes in global net radiation imbalance. Geophysical Research Letters 41: 5588–5597.ADSCrossRefGoogle Scholar
  4. Arrhenius, Svante. 1896. On the influence of carbonic acid in the air on the temperature on the ground. Philosophical Transactions of the Royal Society 41: 237–276.Google Scholar
  5. Azar, Christian. Makten over Klimatet (Swedish) Solving the climate challenge. Translated by Paulina Essunger, 2012 ed. Stockholm: Albert Bonniers Publishing Co., 2008, 2012.Google Scholar
  6. Berner, R.A. 1990. unknown. Geochimica et Cosmochimica Acta 54: 2889–2890.ADSCrossRefGoogle Scholar
  7. Berner, R.A., A.C. Lasaga, and R.M. Garrels. 1983. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. American Journal of Science 283: 641–683.CrossRefGoogle Scholar
  8. Blackwelder, E. 1916. The geological role of phosphorus. American Journal of Sciences 62: 285–298.Google Scholar
  9. Bryson, Reid. 1974. A perspective on climate change. Science 184: 753–760.ADSCrossRefGoogle Scholar
  10. Budyko, Mikhail I. 1956. The energy balance of the Earth's surface (in Russian).Google Scholar
  11. ———. 1969. The effect of solar radiation variations on the climate of the earth. Tellus 21: 611–619.ADSCrossRefGoogle Scholar
  12. ———. 1974. Climate and life. New York: Academic Press.Google Scholar
  13. ———. 1977. Climate change. Washington, DC: American Geophysical Union.Google Scholar
  14. ———. 1988. Global climate catastrophes. New York: Springer-Verlag.CrossRefGoogle Scholar
  15. CDAC, Carbon Dioxide Assessment Committee. 1983. Changing Climate: Report of the Carbon Dioxide Assessment Committee of the National Academy of Sciences. Washington, DC: National Academy Press.Google Scholar
  16. Chambers, D.P., J. Wahr, and R.S. Nerem. 2004. Preliminary observations of global ocean mass variations with GRACE. Geophysical Research Letters 31: Li3310.Google Scholar
  17. Church, J.A., and N.J. White. 2011. Sea-level rise from the late 19th to the early 21st century. Surveys in Geophysics 32: 585–602.ADSCrossRefGoogle Scholar
  18. Council for Agricultural Science and Technology; 1976. Effect of increased nitrogen fixation on stratospheric ozone. Ames, IO: Council for Agricultural Science and Technology.Google Scholar
  19. Crutzen, Paul J. 1970. The influence of nitrogen oxides on the atmospheric ozone content. Quarterly Journal of the Royal Meteorological Society 96: 320–325.ADSCrossRefGoogle Scholar
  20. ———. 1974. Estimates of possible variations in total ozone due to natural causes and human activities. Ambio 3: 201–210.Google Scholar
  21. den Elzen, Michel G.J., Arthur Bensen, and Jan Rotmans. 1995. Modeling global biogeochemical cycles: An integrated modeling approach. Bilthoven, The Netherlands: Global Dynamics and Sustainable Development Programme, National Institute of Public Health and Environment (RIVM).Google Scholar
  22. Durack, Paul J., Susan E. Wijffels, and Richard J. Matear. 2012. Ocean water salinities reveal strong global water cycle intensification during 1950 to 2000. Science 336: 455–458.ADSCrossRefGoogle Scholar
  23. Frank, Louis A., J.B. Sigwarth, and C.M. Yeates. 1990. A search for small solar-system bodies near the earth using a ground-based telescope: Technique and observations. Astronomy and Astrophysics 228: 522.ADSGoogle Scholar
  24. Galbally, I.E. 1985. The emission of nitrogen to the remote atmosphere: Background paper. In The Biogeochemical Cycling of Sulfur and Nitrogen in the Remote Atmosphere, ed. J.N. Galloway et al. Dordrecht, The Netherlands: D. Reidel Publishing Company.Google Scholar
  25. Galloway, James N., William H. Schlesinger, H. Levy, A. Michaels, and J.L. Schnoor. 1995. Nitrogen fixation: Anthropogenic enhancement-environmental response. Global Biogeochemical Cycles 9(2): 235–252.ADSCrossRefGoogle Scholar
  26. Gates, David M. 1993. Climate Change and its biological consequences. Sunderland, MA: Sinauer Associates Inc.Google Scholar
  27. Gerlach, T.M. 1991. unknown. Eos 72: 249–255.ADSGoogle Scholar
  28. Hansen, James, A. Lacis, D. Rind, G. Russell, P. Stone, J. Fung, R. Ruedy, and J. Lerner. 1984. Climate sensitivity analysis of feedback mechanisms. In Geophysical Monograph 29, ed. Maurice Ewing. New York: American Geophysical Union.Google Scholar
  29. Hansen, James, G. Russell, A. Lacis, I. Fung, D. Rind, and P. Stone. 1985. Climate response times: Dependence on climate sensitivity and ocean mixing. Science 229: 582–589.CrossRefGoogle Scholar
  30. Hansen, James, M. Sato, P. Kharecha, D. Beerling, R. Berner, and V. Masson-Delmotte. 2008. Target atmospheric CO2: Where should humanity aim? Open Atmospheric Science Journal 2: 217–231.ADSCrossRefGoogle Scholar
  31. Hansen, James, M. Sato, G. Russell, and P. Kharecha. 2013. Climate sensitivity, sea level and atmospheric carbon dioxide. Philosophical Transactions of the Royal Society A 371: 20210294.CrossRefGoogle Scholar
  32. Hays, J.D., J. Imbrie, and N.J. Shackleton. 1976. Variations in the earth’s orbit: “Pacemaker of the ice ages”. Science 194(4270): 1121–1132.ADSCrossRefGoogle Scholar
  33. Holland, H.D. 1978. The chemical evolution of the atmosphere and the oceans. New York: John Wiley.Google Scholar
  34. Houghton, J.T., B.A. Callander, and S.K. Varney. 1992. Climate change 1992: The supplementary report to the IPCC scientific assessment. Cambridge, UK: Cambridge University Press.Google Scholar
  35. Hoyle, Fred. 1981. Ice, the ultimate human catastrophe. New York: Continuum.Google Scholar
  36. IPCC. 1995. The science of climate change: Contribution of working group I. In 2nd Assessment Report of the Intergovernmental Panel On Climate Change. Cambridge, UK: Cambridge University Press.Google Scholar
  37. ———. 2007. IPCC Fourth Assessment Report: Climate Change 2007 (AR4). 4 vols. Geneva: Intergovernmental Panel on Climate Change.Google Scholar
  38. ———. 2013. Constraints on long-term climate change and the equilibrium climate sensitivity. Geneva.Google Scholar
  39. ———. 2014. IPCC Fifth Assessment Report: Climate change. Cambridge: Cambridge University Press.Google Scholar
  40. Jacob, Daniel. 2002. Atmospheric Chemistry. Princeton: Princeton University Press.Google Scholar
  41. Kasting, James F., and James C. G. Walker. (in press). The geophysical carbon cycle and the uptake of fossil fuel CO2. In Global and Planetary Change.Google Scholar
  42. Kauppi, P., K. Mielikainen, and K. Kuusula. 1992. Biomass and carbon budget of European forests; 1971 to 1990. Science 256: 311–314.CrossRefGoogle Scholar
  43. Kennett, James P., Kevin G. Cannariato, Ingrid L. Hendy, and Richard J. Behl. 2003. Methane hydrates in quaternary climate change: The clathrate gun hypothesis. Washington, DC: American Geophysical Union.CrossRefGoogle Scholar
  44. Krauss, Ulish H., Henning G. Saam, and Helmut W. Schmidt. 1984. Phosphate. In International Strategic Minerals Inventory: Summary Reports 930 series. Washington, DC: USGS.Google Scholar
  45. Lenton, Timothy M., and Andrew Watson. 2011. Revolutions that made the Earth. Oxford: Oxford University Press.CrossRefGoogle Scholar
  46. Lenton, Timothy M., Hermann Held, Elmar Kriegler, James W. Hall, Wolfgang Lucht, Stefan Rahmstorf, and Hans Joachim Schellnhuber. 2008. Tipping elements in the Earth’s climate system. Proceedings of the National Academy of Sciences 105(6): 1786–1793.ADSCrossRefzbMATHGoogle Scholar
  47. Lewis, G.N., and M. Randall. 1923. Thermodynamics. New York: McGraw-Hill.Google Scholar
  48. Lindzen, Richard S., and Ming-Dah Chou. 2001. Does the Earth have an adaptive IR “iris”? Bulletin of the American Meteorological Society 82(3): 417–432.ADSCrossRefGoogle Scholar
  49. Lindzen, Richard S., and Yong-Sang Choi. 2011. On the observational determination of climate sensitivity and its implications. Asia-Pacific Journal of Atmospheric Science 47(4): 377–390.ADSCrossRefGoogle Scholar
  50. Liu, S.C., and R.J. Cicerone. 1984. Fixed nitrogen cycle, Global Tropospheric Chemistry, 113–116. Washington, DC: National Academy Press.Google Scholar
  51. Lotka, Alfred J. 1925. Elements of mathematical biology. 2nd Reprint ed. Baltimore: Williams and Wilkins. Original edition, 1924.Google Scholar
  52. Loulergue, L., F. Parrenin, T. Bluniert, J-M Barnola, R. Spahni, A. Schilt, G. Raisbeck, and J. Chappellaz. 2007. New constraints on the gas age-ice age difference along the EPICA ice cores, 0–50 kyr. Climate of the Past 3: 527–540. doi: 10.5194/cp-3-527-2007.
  53. Lovelock, James E. 1979. Gaia: A new look at life on earth. London: Oxford University Press.Google Scholar
  54. ———. 1988. The ages of Gaia: A biography of our living earth. London: Oxford University Press.Google Scholar
  55. Lunt, Daniel J., Alan M. Haywood, Gavin A. Schmidt, Ulrich Salzmann, Paul J. Valdes, and Harry J. Dowsett. 2010. Earth system sensitivity inferred from Pliocene modeling and data. Nature Geoscience 3: 60–64.ADSCrossRefGoogle Scholar
  56. Mann, Michael E., Stefan Rahmstorf, Byron A. Steinman, Martin Tingley, and Sonya K. Miller. 2016. The likelihood of recent record warmth. Scientific Reports 6: 19831. doi: 10.1038/srep19831. Scholar
  57. Martinez-Boti, M.A., Gavin L. Foster, T.B. Chalk, E.J. Rohling, P.F. Sexton, Daniel J. Lunt, R.D. Pancost, M.P.S. Badger, and D.N. Schmidt. 2015. Plio-Pleistocene climate sensitivity evaluation using high resolution CO2 records. Nature 5: 2.Google Scholar
  58. McElroy, M.B., and S.F. Wofsy. 1986. Tropical forests: Interactions with the atmosphere. In Tropical Forests and World Atmosphere, ed. G.F. Prance. Washington, DC: AAAS.Google Scholar
  59. Milankovitch, Milutin. 1941 [1998]. Canon of insolation and the Ice Age problem. 1998 English translation ed. Belgrade: Zavod za Udz. Original edition, 1941.Google Scholar
  60. Miller, L.M., F. Gans, and A. Kleidon. 2011. Jet stream wind power as a renewable resource. Earth Systems Dynamics 2: 201–212.ADSCrossRefGoogle Scholar
  61. Muller, Richard A., and Gordon J.F. MacDonald. 1997. Glacial cycles and astronomical forcing. Science 277(5323): 215–218.ADSCrossRefGoogle Scholar
  62. Nicolis, Gregoire, and Ilya Prigogine. 1977. Self-organization in non-equilibrium systems. New York: Wiley-Interscience.zbMATHGoogle Scholar
  63. Pasek, Matthew A. 2008. Rethinking the early Earth phosphorus geochemistry. Proceedings of the National Academy of Sciences (PNAS) 105(3): 853–858.ADSCrossRefGoogle Scholar
  64. Peltier, W.R. 2004. Global glacial isostasy and the surface of the ice-age Earth: The ice-5G model and GRACE. Annual Review of Earth and Planetary Sciences 32: 111–149.ADSCrossRefGoogle Scholar
  65. Peng, T.-H., W.S. Broecker, H.-D. Freyer, and S. Trumbore. 1983. A deconvolution of the tree-ring based BC record. Journal of Geophysical Research 88: 3609–3620.ADSCrossRefGoogle Scholar
  66. Petit, J.R., J. Jouzel, D. Raynaud, N.I. Barkov, J.-M. Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V.M. Kotlyakov, M. Legrand, M.Y. Lipenkov, C. Lorius, L. PÉpin, C. Ritz, E. Saltzman, and M. Stievenard. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399: 429–436. doi: 10.1038/20859.ADSCrossRefGoogle Scholar
  67. Previdi, M., B.G. Liepert, D. Peteet, Hansen James, D.J. Beeerling, A.J. Broccoli, S. Frolking, J.N. Galloway, M. Heimann, C. Le Qu’er’e, S. Levitus, and V. Ramaswamy. 2013. Climate sensitivity in the Anthropocene. Quarterly Journal of the Royal Meteorological Society 139: 1121–1131.ADSCrossRefGoogle Scholar
  68. Raymo, R.E., and W.F. Ruddiman. 1992. Tectonic forcing of late Cenozoic climate. Nature 359(6391): 117–122.ADSCrossRefGoogle Scholar
  69. Revelle, Roger, and Hans Suess. 1957. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus IX: 1–27.Google Scholar
  70. Rockström, Johan, Will Steffen, Kevin Noone, Asa Perrsson, F. Stuart Chapin III, Eric F. Lambin, Timothy M. Lenton, Marten Scheffer, Carl Folke, Hans Joachim Schnellhuber, Björn Nykvist, Cynthia A. de Wit, Terry Hughes, Sander van der Leeuw, Henning Rodhe, Sverker Sörlin, Peter K. Snyder, Robert Costanza, Uno Svedin, Malin Falkenmark, Louise Karlberg, Robert W. Corell, Victoria J. Fabry, James Hansen, Brian Walker, Diane Liverman, Katherine Richardson, Paul Crutzen, and Jonathan A. Foley. 2009. A safe operating space for humanity. Nature 461: 472–475.Google Scholar
  71. Rudnick, R. L., and S. Gao 2004. Composition of the continental crust. In The Crust: Treatise on Geochemistry, 1–64. Dordrecht, Netherlands: Elsevier Pergamon.Google Scholar
  72. Schimel, D., I. Enting, M. Heimann, T.M.L. Wigley, D. Raynaud, D. Alves, and U. Siegenthaler. 1994. The carbon cycle. Cambridge, UK: Radiative Forcing of Climate.Google Scholar
  73. Schlesinger, William H. 1991. Biogeochemistry: An analysis of global change. New York: Academic Press.Google Scholar
  74. Sedjo, R.A. 1992. Temperate forest ecosystems in the global carbon cycle. Ambio 21: 274–277.Google Scholar
  75. Shakhova, N., I. Semiletov, A. Salyuk, D. Kosmach, and N. Bel’cheva. 2007. Methane release from the Arctic East Siberian shelf. Geophysical Research Abstracts 9.Google Scholar
  76. Shakhova, N., I. Semiletov, A. Salyuk, and D. Kosmach. 2008. Anomalies of methane in the atmosphere over the East Siberian shelf: Is here any sign of methane leakage from shallow shelf hydrates? Geophysical Research Abstracts 10.Google Scholar
  77. Shakhova, N., I. Semiletov, I. Leifer, A. Salyuk, P. Rekant, and D. Kosmach. 2010a. Geochemical and geophysical evidence of methane release over the East Siberian Arctic Shelf. Journal of Geophysical Research 115: C08007. doi: 10.1029/2009JC005602.ADSCrossRefGoogle Scholar
  78. Shakhova, N., I. Semiletov, A. Salyuk, V. Yusupov, D. Kosmach, and O. Gustafsson. 2010b. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf. Science 327(5970): 1246–1250.ADSCrossRefGoogle Scholar
  79. Shiklomanov, Igor. 1993. World fresh water resources. In Water in Crisis: A Guide to the World's Fresh Water Resources, ed. Peter H. Gleick. New York: Oxford University Press.Google Scholar
  80. Sillèn, L.G. 1967. The ocean as a chemical system. Science 156: 1189–1197.ADSCrossRefGoogle Scholar
  81. Skarke, A., C. Ruppel, M. Kodis, D. Brothers, and E. Lobecker. 2014. Widespread leakage from the sea floor of the East Siberian ocean and along the northern US Atlantic margin. Nature Geoscience 7: 657–661.ADSCrossRefGoogle Scholar
  82. Smil, Vaclav. 1997. Cycles of life: Civilization and the biosphere. New York: Scientific American Library.Google Scholar
  83. ———. 2000. Transforming the world: Synthesis of ammonia and its consequences. Cambridge, MA: MIT Press.Google Scholar
  84. ———. 2001. Cycles of life: Civilisation and the biosphere. Cambridge, MA: MIT Press.Google Scholar
  85. ———. 2003. Energy at the crossroads: Global perspectives and uncertainties. Cambridge, MA: MIT Press.Google Scholar
  86. ———. 2004. Enriching the Earth: Fritz Haber, Carl Bosch and the transformation of world food production. Cambridge, MA: MIT Press.Google Scholar
  87. ———. 2008. Energy in nature and society: General energetics of complex systems. Cambridge, MA: MIT Press.Google Scholar
  88. Stephens, Graeme, Juilin Li, Martin Wild, Carol Anne Clayson, Norman Loeb, Seiji Kato, Tristan L’Ecuyer, Paul W. Stackhouse Jr., Matthew Lebsock, and Timothy Andrews. 2012. An update on Earth’s energy balance in light of latest global observations. Nature Geoscience 5: 691–696.ADSCrossRefGoogle Scholar
  89. Sundquist, Eric T. 1993. The global carbon dioxide budget. Science 259: 934–941.ADSCrossRefGoogle Scholar
  90. Tans, P.P., I.Y. Fung, and T. Takahashi. 1990. The global atmospheric CO2 budget. Science 247: 1431–1438.ADSCrossRefGoogle Scholar
  91. Taylor, K.E., and J.E. Penner. 1994. Anthropogenic aerosols and climate change. Nature 369: 734–737.ADSCrossRefGoogle Scholar
  92. Thiemens, Mark H., and William C. Trogler. 1991. Nylon production: An unknown source of atmospheric nitrous oxide. Science 251: 932–934.ADSCrossRefGoogle Scholar
  93. Tomizuka, A. 2009. Is a box model effective for understanding the carbon cycle? American Journal of Physics 77(2): 150–163.ADSCrossRefGoogle Scholar
  94. Trenberth, K.E., L. Smith, T.T. Qian, A.G. Dai, and J. Fasullo. 2007. Estimates of the global water budget and its annual cycle using observational and model data. Journal of Hydrometeorology 8(4): 758–769.ADSCrossRefGoogle Scholar
  95. Valero Capilla, Antonio, and Alicia Valero Delgado. 2015. Thanatia: The destiny of the Earth’s mineral resources, 1st ed. London: World Scientific.Google Scholar
  96. Valero, Alicia Delgado, Antonio Capilla Valero, and J.B. Gomez. 2011. The crepuscular planet: A model for the exhausted continental crust. Energy 36(1): 694–707.CrossRefGoogle Scholar
  97. Wadhams, P., V. Pavlov, E. Hansen, and G. Budeus. 2003. Long-lived convective chimneys in the Greenland Sea and their climactic role. Geophysical Research Abstracts 5 (05572).Google Scholar
  98. Walker, Gabrielle, and David King. 2009. The hot topic: How to tackle global warming and still keep the lights on. Revised paperback ed. London: Bloomsbury. Original edition, 2008 Bloomsbury London.Google Scholar
  99. Walker, James C.G., P.B. Hays, and James F. Kasting. 1981. unknown. Journal of Geophysical Research 86: 9776–9782.ADSCrossRefGoogle Scholar
  100. Wasdell, David. 2014. Climate sensitivity and the carbon budget. Apollo-Gaia project.Google Scholar
  101. Watson, R.T., L.G. Filho, E. Sanhueza, and A. Janetos. 1992. Greenhouse gases: Sources and sinks. In The Supplementary Report to the IPCC Scientific Assessment, ed. J.T. Houghton, B.A. Callender, and S.K. Varney. Cambridge, UK: Cambridge University Press.Google Scholar
  102. Weiss, R.F. 1981. The temporal and spatial distribution of nitrous oxide. Journal of Geophysical Research 86: 7185–7195.ADSCrossRefGoogle Scholar
  103. Wigley, T.M.L. 1989. Possible climate change due to SO2-derived cloud condensation nuclei. Nature 339: 365–367.ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Robert Ayres
    • 1
  1. 1.INSEADFountainebleauFrance

Personalised recommendations