Advertisement

Computational Aspects of Model-Based Reasoning

  • Gordana Dodig-Crnkovic
  • Antonio Cicchetti
Part of the Springer Handbooks book series (SHB)

Abstract

Computational models and tools provide increasingly solid foundations for the study of cognition and model-based reasoning, with knowledge generation in different types of cognizing agents, from the simplest ones like bacteria to the complex human distributed cognition. After the introduction of the computational turn, we proceed to models of computation and the relationship between information and computation. A distinction is made between mathematical and computational (executable) models , which are central for biology and cognition. Computation as it appears in cognitive systems is physical, natural, embodied, and distributed computation, and we explain how it relates to the symbol manipulation view of classical computationalism . As present day models of distributed, asynchronous, heterogeneous, and concurrent networks are becoming increasingly well suited for modeling of cognitive systems with their dynamic properties, they can be used to study mechanisms of abduction and scientific discovery. We conclude the chapter with the presentation of software modeling with computationally automated reasoning and the discussion of model transformations and separation between semantics and ontology.

Keywords

Modeling Language Unify Modeling Language Model Transformation Turing Machine Concrete Syntax 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
DL

description logics

DSL

domain specific language

GPL

general purpose language

OMG

object management group

PDP

parallel distributed processing

UML

unified modeling language

References

  1. 1.
    G. Dodig-Crnkovic: Investigations into Information Semantics and Ethics of Computing (Mälardalen Univ. Press, Västerås 2006)Google Scholar
  2. 2.
    C. Ess, R. Hagengruber (eds.): The computational turn: Past, presents, futures?, Proc. IACAP 2011 Conf. (Monsenstein Vannerdat, Münster 2011)Google Scholar
  3. 3.
    D.M. Berry: The computational turn: Thinking about the digital humanities, Cult. Mach. 12, 1–22 (2011)Google Scholar
  4. 4.
    P. Denning: Structure and organization of computing. In: Computing Handbook. Computer Science and Software Engineering, ed. by T. Gonzalez, J. Diaz-Herrera, A. Tucker (Chapman Hall/CRC, Boca Raton 2014)Google Scholar
  5. 5.
    P. Denning, P. Rosenbloom: The fourth great domain of science, ACM Commun. 52(9), 27–29 (2009)CrossRefGoogle Scholar
  6. 6.
    S. Abramsky, B. Coecke: Physics from computer science: A position statement, Int. J. Unconv. Comput. 3(3), 179–197 (2007)Google Scholar
  7. 7.
    P.J. Denning: The great principles of computing, Am. Sci. 98, 369 (2010)Google Scholar
  8. 8.
    S. Wolfram: A New Kind of Science (Wolfram Media, Champaign 2002)zbMATHGoogle Scholar
  9. 9.
    J.M. Wing: Computational thinking, ACM Commun. 49(3), 33–35 (2006)CrossRefGoogle Scholar
  10. 10.
    M. Burgin, G. Dodig-Crnkovic: A taxonomy of computation and information architecture, Proc. 2015 Eur. Conf. Softw. Archit. Workshops (ECSAW '15) (ACM, New York 2015), Article 7Google Scholar
  11. 11.
    G. Dodig-Crnkovic: Shifting the paradigm of philosophy of science: Philosophy of information and a new Renaissance, Minds Mach. 13(4), 521–536 (2003)CrossRefGoogle Scholar
  12. 12.
    M. Burgin: Theory of Information: Fundamentality, Diversity and Unification (World Scientific, Singapore 2010)zbMATHGoogle Scholar
  13. 13.
    J. van Benthem, P. Adriaans: Philosophy of Information (North Holland, Amsterdam 2008)Google Scholar
  14. 14.
    J. van Benthem: Logic and the dynamics of information, Minds Mach. 13(4), 503–519 (2003)CrossRefGoogle Scholar
  15. 15.
    J. van Benthem: Logical pluralism meets logical dynamics?, Australas. J. Logic 6, 182–209 (2008)MathSciNetzbMATHGoogle Scholar
  16. 16.
    J. van Benthem: Logical Dynamics of Information and Interaction (Cambridge Univ. Press, Cambridge 2011)zbMATHCrossRefGoogle Scholar
  17. 17.
    P. Allo: Logical pluralism and semantic information, J. Philos. Logic 36(6), 659–694 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    B. Cantwell Smith: On the Origin of Objects (MIT Press, Cambridge 1998)Google Scholar
  19. 19.
    M. Tedre: The Science of Computing: Shaping a Discipline (CRC Press/Taylor Francis, Boca Raton 2014)zbMATHCrossRefGoogle Scholar
  20. 20.
    BusinessDictionary: http://www.businessdictionary.com/definition/computing.html#ixzz3 NZLB7QAD (2014), visited 02.08.2016
  21. 21.
    G. Rozenberg, T. Bäck, J.N. Kok (Eds.): Handbook of Natural Computing (Springer, Berlin, Heidelberg 2012)zbMATHGoogle Scholar
  22. 22.
    H. Zenil (Ed.): A Computable Universe. Understanding Computation & Exploring Nature As Computation (World Scientific/Imperial College Press, Singapore 2012)Google Scholar
  23. 23.
    G. Dodig-Crnkovic, R. Giovagnoli: Computing Nature (Springer, Berlin, Heidelberg 2013)zbMATHCrossRefGoogle Scholar
  24. 24.
    A. Church: Abstract No. 204, Bull. Amer. Math. Soc. 41, 332–333 (1935)Google Scholar
  25. 25.
    A. Church: An unsolvable problem of elementary number theory, Amer. J. Math. 58, 354 (1936)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    G. Kampis: Self-Modifying Systems in Biology and Cognitive Science: A New Framework for Dynamics, Information, and Complexity (Pergamon Press, Amsterdam 1991)Google Scholar
  27. 27.
    S. Navlakha, Z. Bar-Joseph: Distributed information processing in biological and computational systems, Commun. ACM 58(1), 94–102 (2015)CrossRefGoogle Scholar
  28. 28.
    G. Dodig-Crnkovic: Significance of models of computation from Turing model to natural computation, Minds Mach. 21(2), 301–322 (2011)CrossRefGoogle Scholar
  29. 29.
    E. Eberbach, D. Goldin, P. Wegner: Turing’s ideas and models of computation. In: Alan Turing: Life and Legacy of a Great Thinker, ed. by C. Teuscher (Springer, Berlin, Heidelberg 2004) pp. 159–194CrossRefGoogle Scholar
  30. 30.
    M. Burgin: Super-Recursive Algorithms (Springer, New York 2005)zbMATHGoogle Scholar
  31. 31.
    D. Baltimore: How biology became an information science. In: The Invisible Future, ed. by P. Denning (McGraw-Hill, New York 2001) pp. 43–56Google Scholar
  32. 32.
    S.B. Cooper, J. van Leeuwen: Alan Turing. His Work and Impact (Elsevier Science, Amsterdam 2013)zbMATHGoogle Scholar
  33. 33.
    M. Burgin, G. Dodig-Crnkovic: From the closed classical algorithmic universe to an open world of algorithmic constellations. In: Computing Nature, ed. by G. Dodig-Crnkovic, R. Giovagnoli (Springer, Berlin, Heidelberg 2013) pp. 241–253CrossRefGoogle Scholar
  34. 34.
    L. Floridi: Open problems in the philosophy of information, Metaphilosophy 35(4), 554–582 (2004)MathSciNetCrossRefGoogle Scholar
  35. 35.
    G. Dodig-Crnkovic, S. Stuart: Computation, Information, Cognition: The Nexus and the Liminal (Cambridge Scholars Pub., Newcastle 2007)Google Scholar
  36. 36.
    G. Dodig-Crnkovic, V. Müller: A dialogue concerning two world systems: Info-computational vs. mechanistic. In: Information and Computation, ed. by G. Dodig-Crnkovic, M. Burgin (World Scientific, Singapore 2011) pp. 149–184CrossRefGoogle Scholar
  37. 37.
    L. Floridi: What is the philosophy of information?, Metaphilosophy 33(1/2), 123–145 (2002)CrossRefGoogle Scholar
  38. 38.
    C. Hewitt, P. Bishop, P. Steiger: A universal modular ACTOR formalism for artificial intelligence, Proc. 3rd Int. Joint Conf. Artif. Intell. IJCAI, ed. by N.J. Nilsson (William Kaufmann, Standford 1973) pp. 235–245Google Scholar
  39. 39.
    C. Hewitt: Actor model for discretionary, adaptive concurrency, CoRR (2010) http://arxiv.org/abs/1008.1459
  40. 40.
    C. Hewitt: What is computation? Actor model versus Turing’s model. In: A Computable Universe, Understanding Computation & Exploring Nature As Computation, ed. by H. Zenil (World Scientific/Imperial College Press, London 2012)Google Scholar
  41. 41.
    Visuwords online graphical dictionary: http://www.visuwords.com, visited 02.08.2016
  42. 42.
    L. Wittgenstein: Philosophical Investigations, transl. by G.E.M. Anscombe, R. Rhees (Blackwell, Oxford 2001) Google Scholar
  43. 43.
    G. Deleuze, F. Guattari: A Thousand Plateaus: Capitalism and Schizophrenia (Univ. Minnesota Press, Minneapolis 2005)Google Scholar
  44. 44.
    B. Cooper: The mathematician's bias -- and the return to embodied computation. In: A Computable Universe, Understanding Computation & Exploring Nature As Computation, ed. by H. Zenil (World Scientific/Imperial College Press, Singapore 2012) p. 125CrossRefGoogle Scholar
  45. 45.
    A. Regev, E. Shapiro: Cellular abstractions: Cells as computation, Nature 419, 343 (2002)CrossRefGoogle Scholar
  46. 46.
    J. Fisher, T.A. Henzinger: Executable cell biology, Nat. Biotechnol. 25(11), 1239–1249 (2007)CrossRefGoogle Scholar
  47. 47.
    D. Thompson: On Growth and Form (Cambridge Univ. Press, Cambridge 1961)Google Scholar
  48. 48.
    A. Seilacher, A.D. Gishlick: Morphodynamics (CRC, Boca Raton 2014)CrossRefGoogle Scholar
  49. 49.
    R.V. Jean: Phyllotaxis: A Systematic Study in Plant Morphogenesis (Cambridge Univ. Press, New York 1994)CrossRefGoogle Scholar
  50. 50.
    P. Prusinkiewicz, A. Lindenmayer: The Algorithmic Beauty of Plants (Springer, Berlin, Heidelberg 1990)zbMATHCrossRefGoogle Scholar
  51. 51.
    G. Rozenberg, L. Kari: The many facets of natural computing, Commun. ACM 51, 72–83 (2008)Google Scholar
  52. 52.
    J. Crutchfield, W. Ditto, S. Sinha: Introduction to focus issue: Intrinsic and designed computation: Information processing in dynamical systems – Beyond the digital hegemony, Chaos 20 (2010) doi:http://dx.doi.org/10.1063/1.3492712
  53. 53.
    G. Dodig-Crnkovic: Dynamics of information as natural computation, Information 2(3), 460–477 (2011)CrossRefGoogle Scholar
  54. 54.
    N. Fresco: Physical Computation and Cognitive Science (Springer, Berlin, Heidelberg 2014)CrossRefGoogle Scholar
  55. 55.
    A.M. Turing: The chemical basis of morphogenesis, Philos. Trans. R. Soc. Lond. 237(641), 37–72 (1952)MathSciNetCrossRefGoogle Scholar
  56. 56.
    R. Pfeifer, F. Iida: Morphological computation: Connecting body, brain and environment, Jpn. Sci. Mon. 58(2), 48–54 (2005)Google Scholar
  57. 57.
    H. Hauser, R.M. Füchslin, R. Pfeifer: Opinions and Outlooks on Morphological Computation (Univ. Zurich, Zurich 2014), e-book http://www.merlin.uzh.ch/publication/show/10528 Google Scholar
  58. 58.
    L. Cardelli: Abstract machines of systems biology, Bull. EATCS 93, 176–204 (2007)Google Scholar
  59. 59.
    L. Cardelli: Artificial biochemistry. In: Algorithmic Bioprocesses, ed. by A. Condon, D. Harel, J.N. Kok, A. Salomaa, E. Winfree (Springer, Heidelberg 2009) pp. 429–462CrossRefGoogle Scholar
  60. 60.
    G. Chaitin: Epistemology as information theory: From Leibniz to \({\Upomega}\). In: Computation, Information, Cognition – The Nexus and The Liminal, ed. by G. Dodig-Crnkovic (Cambridge Scholars Pub., Newcastle 2007) pp. 2–17Google Scholar
  61. 61.
    G. Dodig-Crnkovic: Modeling life as cognitive info-computation. In: Computability in Europe 2014. LNCS, ed. by A. Beckmann, E. Csuhaj-Varjú, K. Meer (Springer, Berlin, Heidelberg 2014) pp. 153–162Google Scholar
  62. 62.
    A. Clark: Microcognition: Philosophy, Cognitive Science, and Parallel Distributed Processing (MIT Press, Cambridge 1989)Google Scholar
  63. 63.
    M. Mitchell: A complex-systems perspective on the ‘computation vs. dynamics’ debate in cognitive science, Proc. 20th Annu. Conf. Cogn. Sci. Soc. Cogsci98, ed. by M.A. Gernsbacher, S.J. Derry (1998) pp. 710–715Google Scholar
  64. 64.
    M. Scheutz: Computationalism new Directions (MIT Press, Cambridge 2002)Google Scholar
  65. 65.
    G. O'Brien: Connectionism, analogicity and mental content, Acta Anal. 22, 111–131 (1998)Google Scholar
  66. 66.
    G. O’Brien, J. Opie: How do connectionist networks compute?, Cogn. Process. 7(1), 30–41 (2006)CrossRefGoogle Scholar
  67. 67.
    R. Trenholme: Analog simulation, Philos. Sci. 61(1), 115–131 (1994)CrossRefGoogle Scholar
  68. 68.
    G. Basti: Intelligence and reference: Formal ontology of the natural computation. In: Computing Nature, ed. by G. Dodig-Crnkovic, R. Giovagnoli (Springer, Berlin, Heidelberg 2013) pp. 139–159CrossRefGoogle Scholar
  69. 69.
    W.J. Freeman: The neurobiological infrastructure of natural computing: Intentionality, New Math. Nat. Comput. 5(1), 19–29 (2009)CrossRefGoogle Scholar
  70. 70.
    H. Maturana, F. Varela: Autopoiesis and Cognition: The Realization of the Living (Reidel, Dordrecht 1980)CrossRefGoogle Scholar
  71. 71.
    E. Ben-Jacob, I. Becker, Y. Shapira: Bacteria linguistic communication and social intelligence, Trends Microbiol. 12(8), 366–372 (2004)CrossRefGoogle Scholar
  72. 72.
    E. Ben-Jacob, Y. Shapira, A.I. Tauber: Seeking the foundations of cognition in bacteria, Physica A 359, 495–524 (2006)CrossRefGoogle Scholar
  73. 73.
    E. Ben-Jacob: Learning from bacteria about natural information processing, Ann. NY Acad. Sci. 1178, 78–90 (2009)CrossRefGoogle Scholar
  74. 74.
    W.-L. Ng, B.L. Bassler: Bacterial quorum-sensing network architectures, Annu. Rev. Genet. 43, 197–222 (2009)CrossRefGoogle Scholar
  75. 75.
    S. Schauder, B.L. Bassler: The languages of bacteria, Genes Dev. 15, 1468–1480 (2001)CrossRefGoogle Scholar
  76. 76.
    J.A. Shapiro: Bacteria as multicellular organisms, Sci. Am. 256(6), 82–89 (1988)CrossRefGoogle Scholar
  77. 77.
    J.A. Shapiro: Natural genetic engineering in evolution, Genetica 86, 99–111 (1992)CrossRefGoogle Scholar
  78. 78.
    J.A. Shapiro: Bacteria are small but not stupid: Cognition, natural genetic engineering and sociobacteriology, Stud. Hist. Philos. Biol. Biomed. Sci. 38, 807–819 (2007)CrossRefGoogle Scholar
  79. 79.
    R. Xavier, N. Omar, L. de Castro: Bacterial colony: Information processing and computational behavior, 3rd World Cong. Nat. Biol. Inspir. Comput. (NaBIC) (2011) pp. 439–443Google Scholar
  80. 80.
    L. Magnani, E. Bardone: Sharing representations and creating chances through cognitive niche construction. The role of affordances and abduction. In: Communications and Discoveries From Multidisciplinary Data, ed. by S. Iwata, Y. Oshawa, S. Tsumoto, N. Zhong, Y. Shi, L. Magnani (Springer, Berlin, Heidelberg 2008) pp. 3–40CrossRefGoogle Scholar
  81. 81.
    S. Stepney, S.L. Braunstein, J.A. Clark, A.M. Tyrrell, A. Adamatzky, R.E. Smith, T. Addis, C. Johnson, J. Timmis, P. Welch, R. Milner, D. Partridge: Journeys in non-classical computation I: A grand challenge for computing research, Int. J. Parallel Emerg. Distr. Syst. 20, 5–19 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  82. 82.
    S. Stepney, S.L. Braunstein, J.A. Clark, A.M. Tyrrell, A. Adamatzky, R.E. Smith, T. Addis, C. Johnson, J. Timmis, P. Welch, R. Milner, D. Partridge: Journeys in non-classical computation II: Initial journeys and waypoints, Int. J. Parallel Emerg. Distr. Syst. 21, 97–125 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  83. 83.
    G. Piccinini: Computation in physical systems. In: The Stanford Encyclopedia of Philosophy, ed. by E. N. Zalta (Fall 2012 Edition) http://plato.stanford.edu/archives/fall2012/entries/computation-physicalsystems/
  84. 84.
    T. Deacon: Incomplete Nature. How Mind Emerged from Matter (Norton, New York, London 2011)Google Scholar
  85. 85.
    C.E. Maldonado, A.N. Gómez Cruz: Biological hypercomputation: A new research problem in complexity theory, Complexity 20(4), 8–18 (2015)CrossRefGoogle Scholar
  86. 86.
    F. Hernandez Quiroz: Computational and human mind model. In: The Computational Turn: Past, Presents, Futures?, ed. by C. Ess, R. Hagengruber (Monsenstein Vannerdat, Münster 2011) pp. 104–106Google Scholar
  87. 87.
    O. Bournez, M. Cosnard: On the computational power and super-Turing capabilities of dynamical systems, Theor. Comput. Sci. 168, 417–459 (1996)zbMATHCrossRefGoogle Scholar
  88. 88.
    H.T. Siegelmann: Turing on super-Turing and adaptivity, Prog. Biophys. Mol. Biol. 113(1), 117–126 (2013)CrossRefGoogle Scholar
  89. 89.
    A.M. Turing: Systems of logic based on ordinals, Proc. Lond. Math. Soc. s2-45, 161–228 (1939)MathSciNetzbMATHCrossRefGoogle Scholar
  90. 90.
    C.E. Maldonado, A.N. Gómez Cruz: Biological hypercomputation: A concept is introduced, http://arxiv.org/abs/1210.4819 (2012)
  91. 91.
    S. Inoue, T. Matsuzawa: Working memory of numerals in chimpanzees, Curr. Biol. 17(23), R1004–R1005 (2007)CrossRefGoogle Scholar
  92. 92.
    R. Bshary, W. Wickler, H. Fricke: Fish cognition: A primate’s eye view, Anim. Cogn. 5(1), 1–13 (2002)CrossRefGoogle Scholar
  93. 93.
    E.L. MacLean, L.J. Matthews, B.A. Hare, C.L. Nunn, R.C. Anderson, F. Aureli, E.M. Brannon, J. Call, C.M. Drea, N.J. Emery, D.B.M. Haun, E. Herrmann, L.F. Jacobs, M.L. Platt, A.G. Rosati, A.A. Sandel, K.K. Schroepfer, A.M. Seed, J. Tan, C.P. van Schaik, V. Wobber: How does cognition evolve? Phylogenetic comparative psychology, Anim. Cogn. 15(2), 223–238 (2012)CrossRefGoogle Scholar
  94. 94.
    H. Bergson: Creative Evolution (Dover, New York 1998)Google Scholar
  95. 95.
    G. Dodig-Crnkovic: Knowledge generation as natural computation, J. Syst. Cybern. Inf. 6(2), 12–16 (2008)Google Scholar
  96. 96.
    R.N. Giere: Models as parts of distributed cognitive systems. In: Model-Based Reasoning: Science, Technology, Values, ed. by L. Magnani, N. Nersessian (Kluwer, Dordrecht 2002) pp. 227–241CrossRefGoogle Scholar
  97. 97.
    D.E. Rumelhart, J.L. McClelland, PDP Research Group: Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Volume 1: Foundations (MIT Press, Cambridge 1986)Google Scholar
  98. 98.
    L. Suchman: Plans and Situated Actions (Cambridge Univ. Press, Cambridge 1987)Google Scholar
  99. 99.
    F. Varela, E. Thompson, E. Rosch: The Embodied Mind: Cognitive Science and Human Experience (MIT Press, Cambridge 1991)Google Scholar
  100. 100.
    E. Hutchins: Cognition in the Wild (MIT Press, Cambridge 1995)Google Scholar
  101. 101.
    A. Clark: Being There: Putting Brain, Body and World Together Again (Oxford Univ. Press, Oxford 1997)Google Scholar
  102. 102.
    A. Clark: Supersizing the Mind Embodiment, Action, and Cognitive Extension (Oxford Univ. Press, Oxford 2008)CrossRefGoogle Scholar
  103. 103.
    A. Clark, D.J. Chalmers: The extended mind, Analysis 58(1), 7–19 (1998)CrossRefGoogle Scholar
  104. 104.
    T. Froese, T. Ziemke: Enactive artificial intelligence: Investigating the systemic organization of life and mind, Artif. Intell. 173(3/4), 466–500 (2009)CrossRefGoogle Scholar
  105. 105.
    T.T. Rogers, J.L. McClelland: Parallel distributed processing at 25: Further explorations in the microstructure of cognition, Cogn. Sci. 38, 1024–1077 (2014)CrossRefGoogle Scholar
  106. 106.
    R. Giere: Scientific cognition as distributed cognition. In: The Cognitive Basis of Science, ed. by P. Carruthers, S.P. Stich, M. Siegal (Cambridge Univ. Press, Cambridge 2002) p. 285CrossRefGoogle Scholar
  107. 107.
    W. Bechtel: What knowledge must be in the head in order to acquire knowledge? In: Communicating Meaning: The Evolution and Development of Language, ed. by B.M. Velichkovsky, D.M. Rumbaugh (Lawrence Erlbaum, New Jersey 1996)Google Scholar
  108. 108.
    A.-L. Barabasi: The architecture of complexity, IEEE Control Syst. Mag. 27(4), 33–42 (2007)CrossRefGoogle Scholar
  109. 109.
    I. Cafezeiro, C. Gadelha, V. Chaitin, I.C. da Marques: A knowledge-construction perspective on human computing, collaborative behavior and new trends in system interactions, Lect. Notes Comput. Sci. 8510, 58–68 (2014)CrossRefGoogle Scholar
  110. 110.
    N.J. Nersessian: The cognitive basis of model-based reasoning in science. In: The Cognitive Basis of Science, ed. by P. Carruthers, S. Stich, M. Siegal (Cambridge Univ. Press, Cambridge 2002) pp. 133–153CrossRefGoogle Scholar
  111. 111.
    N.J. Nersessian: Should physicists preach what they practice? Constructive modeling in doing and learning physics, Sci. Educ. 4, 203–226 (1995)CrossRefGoogle Scholar
  112. 112.
    N.J. Nersessian: Model-based reasoning in conceptual change. In: Model-Based Reasoning in Scientific Discovery, ed. by L. Magnani, N. Nersessian, P. Thagard (Kluwer/Plenum, New York 1999) pp. 5–22CrossRefGoogle Scholar
  113. 113.
    L. Magnani, N.J. Nersessian, P. Thagard (Eds.): Model-Based Reasoning in Scientific Discovery (Kluwer/Plenum, New York 1999)Google Scholar
  114. 114.
    L. Magnani, N.J. Nersessian: Model-Based Reasoning: Science, Technology, Values (Springer, New York 2002)CrossRefGoogle Scholar
  115. 115.
    R.N. Giere: Using models to represent reality. In: Model-Based Reasoning in Scientific Discovery, ed. by L. Magnani, N. Nersessian, P. Thagard (Kluwer/Plenum, New York 1999) pp. 41–57CrossRefGoogle Scholar
  116. 116.
    L. Magnani: Model-based and manipulative abduction in science, Found. Sci. 9(3), 219–247 (2004)CrossRefGoogle Scholar
  117. 117.
    N.H. Narayanan, M. Suwa, H. Motoda: Hypothesizing behaviors from device diagrams. In: Diagrammatic Reasoning: Cognitive and Computational Perspectives, ed. by J. Glasgow, N.H. Narayanan, B. Chanrasekaran (MIT Press, Cambridge 1995) pp. 501–534Google Scholar
  118. 118.
    D. Wang, J. Lee, H. Zeevat: Reasoning with diagrammatic representations. In: Diagrammatic Reasoning: Cognitive and Computational Perspectives, ed. by J. Glasgow, N.H. Narayanan, B. Chanrasekaran (MIT Press, Cambridge 1995)Google Scholar
  119. 119.
    R.N. Giere: Scientific Perspectivism (Univ. Chicago Press, Chicago 2006)CrossRefGoogle Scholar
  120. 120.
    L. Magnani: Abductive Cognition: The Epistemological and Eco-Cognitive Dimensions of Hypothetical Reasoning (Springer, Berlin, Heidelberg 2009)zbMATHCrossRefGoogle Scholar
  121. 121.
    L. Magnani, M. Piazza: Morphodynamical abduction. Causation by attractors dynamics of explanatory hypotheses in science, Found. Sci. 10, 107–132 (2005)MathSciNetCrossRefGoogle Scholar
  122. 122.
    P. Thagard: Conceptual Revolutions (Princeton Univ. Press, Princeton 1992)Google Scholar
  123. 123.
    T. Deacon: The Symbolic Species: The Co-Evolution of Language and the Brain (Norton, New York, London 1997)Google Scholar
  124. 124.
    K. Czarnecki: Generative Programming. Principles and Techniques of Software Engineering Based on Automated Configuration and Fragment-Based Component Models, Ph.D. Thesis (Department of Computer Science and Automation, Technical University of Ilmenau, Ilmenau 1998)Google Scholar
  125. 125.
    J. Rothenberg: The nature of modeling. In: Artificial Intelligence, Simulation, and Modeling, ed. by L.E. William, K.A. Loparo, N.R. Nelson (Wiley, New York 1989) pp. 75–92Google Scholar
  126. 126.
    F. Dau, P.W. Eklund: A diagrammatic reasoning system for the description logic ALC, J. Vis. Lang. Comput. 19(5), 539–573 (2008)CrossRefGoogle Scholar
  127. 127.
    Object Management Group (OMG): UML 2.4.1 Superstructure Specification. OMG Document Number: formal/2011-08-06 (OMG 2011), http://www.omg.org/spec/UML/2.4.1/
  128. 128.
    D. Harel, B. Rumpe: Meaningful modeling: What’s the semantics of ‘‘semantics’’?, IEEE Comput. 37(10), 64–72 (2004)CrossRefGoogle Scholar
  129. 129.
    A. Vallecillo: A journey through the secret life of models, Persp. Workshop: Model Eng. Complex Syst. (MECS), Dagstuhl Sem. Proc. 08331. (2008)Google Scholar
  130. 130.
    T. Kühne: Matters of (meta-) modeling, Soft. Syst. Model. 5(4), 369–385 (2006)CrossRefGoogle Scholar
  131. 131.
    G. Dodig-Crnkovic: Info-computational constructivism and cognition, Constr. Found. 9(2), 223–231 (2014)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Applied Information TechnologyChalmers University of TechnologyGöteborgSweden
  2. 2.Department of Innovation, Design, and EngineeringMälardalen UniversityVästeråsSweden

Personalised recommendations