Advertisement

Home Network or Access Link? Locating Last-Mile Downstream Throughput Bottlenecks

  • Srikanth Sundaresan
  • Nick Feamster
  • Renata Teixeira
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9631)

Abstract

As home networks see increasingly faster downstream throughput speeds, a natural question is whether users are benefiting from these faster speeds or simply facing performance bottlenecks in their own home networks. In this paper, we ask whether downstream throughput bottlenecks occur more frequently in their home networks or in their access ISPs. We identify lightweight metrics that can accurately identify whether a throughput bottleneck lies inside or outside a user’s home network and develop a detection algorithm that locates these bottlenecks. We validate this algorithm in controlled settings and report on two deployments, one of which included 2,652 homes across the United States. We find that wireless bottlenecks are more common than access-link bottlenecks—particularly for home networks with downstream throughput greater than 20 Mbps, where access-link bottlenecks are relatively rare.

Keywords

Bottleneck location Wireless bottlenecks Last-mile Passive measurements 

Notes

Acknowledgments

We thank the FCC and SamKnows for helping us develop and deploy HoA in the Measuring Broadband America (MBA) platform. We also acknowledge the participants of the MBA platform. We would like to thank our shepherd, Mahesh K. Marina, and the reviewers for their helpful comments. This work was supported by NSF awards CNS-1535796, CNS-1539906, and CNS-1213157, and the European Communitys Seventh Framework Programme (FP7/2007–2013) no. 611001 (User-Centric Networking).

References

  1. 1.
    Adya, A., Bahl, P., Chandra, R., Qiu, L.: Architecture and techniques for diagnosing faults in IEEE 802.11 infrastructure networks. In: MobiCom, pp. 30–44, Philadelphia, PA (2004)Google Scholar
  2. 2.
    Ahmed, N., Ismail, U., Keshav, S., Papagiannaki, K.: Online estimation of RF interference. In: ACM CoNEXT, Madrid, Spain, December 2008Google Scholar
  3. 3.
    Biaz, S., Vaidya, N.H.: Discriminating congestion losses from wireless losses using inter-arrival times at the receiver. In: IEEE Symposium on Application - Specific Systems and Software Engineering and Technology (ASSET), Washington, DC, USA (1999)Google Scholar
  4. 4.
    Canadi, I., Barford, P., Sommers, J.: Revisiting broadband performance. In: ACM SIGCOMM Internet Measurement Conference (IMC), October 2012Google Scholar
  5. 5.
    Cheng, Y., Bellardo, J., Benko, P., Snoeren, A.C., Voelker, G.M., Savage, S.: Jigsaw: solving the puzzle of enterprise 802.11 analysis. In: Proceedings of ACM SIGCOMM, Pisa, Italy, August 2006Google Scholar
  6. 6.
    Cheng, Y.C., Afanasyev, M., Verkaik, P., Benkö, P., Chiang, J., Snoeren, A.C., Savage, S., Voelker, G.M.: Automating cross-layer diagnosis of enterprise wireless networks. SIGCOMM Comput. Commun. Rev. 37(4), 25–36 (2007)CrossRefGoogle Scholar
  7. 7.
    Cioccio, L.D., Teixeira, R., Rosenberg, C.: Measuring home networks with HomeNet profiler. In: Roughan, M., Chang, R. (eds.) PAM 2013. LNCS, vol. 7799, pp. 176–186. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Croce, D., En-Najjary, T., Urvoy-Keller, G., Biersack, E.: Capacity estimation of ADSL links. In: Proceedings of CoNEXT, December 2008Google Scholar
  9. 9.
    Dischinger, M., Haeberlen, A., Gummadi, K.P., Saroiu, S.: Characterizing residential broadband networks. In: Proceedings of ACM SIGCOMM Internet Measurement Conference, San Diego, CA, USA, October 2007Google Scholar
  10. 10.
    Kanuparthy, P., Dovrolis, C., Papagiannaki, K., Seshan, S., Steenkiste, P.: Can user-level probing detect and diagnose common home-WLAN pathologies. SIGCOMM Comput. Commun. Rev. 42(1), 7–15 (2012)CrossRefGoogle Scholar
  11. 11.
    Katabi, D., Blake, C.: Inferring congestion sharing and path characteristics from packet interarrival times. Technical report MIT-LCS-TR-828, Massachusetts Institute of Technology (2002)Google Scholar
  12. 12.
    Kim, K.H., Nam, H., Schulzrinne, H.: WiSlow: a Wi-Fi network performance troubleshooting tool for end users. In: IEEE INFOCOM, pp. 862–870 (2014)Google Scholar
  13. 13.
    Lakshminarayanan, K., Sapra, S., Seshan, S., Steenkiste, P.: RFdump: an architecture for monitoring the wireless ether. In: Proceedings of the 5th International Conference on Emerging Networking Experiments and Technologies, CoNEXT 2009, pp. 253–264 (2009)Google Scholar
  14. 14.
    Mahajan, R., Rodrig, M., Wetherall, D., Zahorjan, J.: Analyzing the mac-level behavior of wireless networks in the wild. In: SIGCOMM 2006, pp. 75–86 (2006)Google Scholar
  15. 15.
    Niculescu, D.: Interference map for 802.11 networks. In: ACM SIGCOMM Internet Measurement Conference, pp. 339–350, San Diego, California, USA, October 2007Google Scholar
  16. 16.
    Rayanchu, S., Mishra, A., Agrawal, D., Saha, S., Banerjee, S.: Diagnosing wireless packet losses in 802.11: separating collision from weak signal. In: INFOCOM 2008, The 27th Conference on Computer Communications, April 2008, pp. 735–743. IEEE (2008)Google Scholar
  17. 17.
    Rayanchu, S., Patro, A., Banerjee, S.: Catching whales and minnows using WiFiNet: deconstructing non-WiFi interference using wifi hardware. In: USENIX NSDI, San Jose, CAGoogle Scholar
  18. 18.
    Rayanchu, S., Patro, A., Banerjee, S.: Airshark: detecting non-WiFi RF devices using commodity wifi hardware. In: ACM SIGCOMM Internet Measurement Conference, pp. 137–154, Berlin, Germany (2011)Google Scholar
  19. 19.
    Sánchez, M.A., Otto, J.S., Bischof, Z.S., Bustamante, F.E.: Trying broadband characterization at home. In: Roughan, M., Chang, R. (eds.) PAM 2013. LNCS, vol. 7799, pp. 198–207. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  20. 20.
    Sundaresan, S., de Donato, W., Feamster, N., Teixeira, R., Crawford, S., Pescapè, A.: Broadband internet performance: a view from the gateway. In: ACM SIGCOMM, Toronto, Ontario, Canada, August 2011Google Scholar
  21. 21.
    tcptrace: A TCP connection analysis tool. http://irg.cs.ohiou.edu/software/tcptrace/
  22. 22.
    Zhang, Y., Breslau, L., Paxson, V., Shenker, S.: On the characteristics and origins of internet flow rates. In: Proceedings of ACM SIGCOMM, Pittsburgh, PA, August 2002Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Srikanth Sundaresan
    • 1
  • Nick Feamster
    • 2
  • Renata Teixeira
    • 3
  1. 1.ICSIBerkeleyUSA
  2. 2.Princeton UniversityPrincetonUSA
  3. 3.InriaLyonFrance

Personalised recommendations