Advertisement

A Brief History of MPLS Usage in IPv6

  • Yves VanaubelEmail author
  • Pascal Mérindol
  • Jean-Jacques Pansiot
  • Benoit Donnet
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9631)

Abstract

Recent researches have stated the fast deployment of IPv6. It has been demonstrated that IPv6 grows much faster, being so more and more adopted by both Internet service providers but also by servers and end-hosts. In parallel, researches have been conducted to discover and assess the usage of MPLS tunnels. Indeed, recent developments in the ICMP protocol make certain categories of MPLS tunnels transparent to traceroute probing. However, these studies focus only on IPv4, where MPLS is strongly deployed.

In this paper, we provide a first look at how MPLS is used under IPv6 networks using traceroute data collected by CAIDA. At first glance, we observe that the MPLS deployment and usage seem to greatly differ between IPv4 and IPv6, in particular in the way MPLS label stacks are used. While label stacks with at least two labels are marginal in IPv4 (and mostly correspond to a VPN usage), they are prevalent in IPv6. After a deeper analysis of the label stack typical content in IPv6, we show that such tunnels result from the use of 6PE. This is not really surprising since this mechanism was specifically designed to forward IPv6 traffic using MPLS tunnels through networks that are not fully IPv6 compliant. However, we show that it does not result from non dual-stack routers but rather from the absence of native IPv6 MPLS signaling protocols. Finally, we investigate a large Tier-1 network, Cogent, that stands out with an original set-up.

Keywords

IPv6 6PE Network discovery MPLS LDP RSVP-TE Traceroute 

References

  1. 1.
    Dhamdhere, A., Luckie, M., Huffaker, B., Claffy, K., ELmokashfi, A., Aben, E.: Measuring the deployment of IPv6: topology, routing, and performance. In: Proceedings of ACM Internet Measurement Conference (IMC), November 2012Google Scholar
  2. 2.
    Czyz, J., Allman, M., Zhang, J., Iekel-Johnson, S., Osterweil, E., Bailey, M.: Measuring IPv6 adoption. In: Proceedings of ACM SIGCOMM, August 2014Google Scholar
  3. 3.
    American Registry for Internet Numbers (ARIN): IPv4 depletion, September 2015. https://www.arin.net/resources/request/ipv4_countdown.html
  4. 4.
    Sommers, J., Eriksson, B., Barford, P.: On the prevalence and characteristics of MPLS deployments in the open Internet. In: Proceedings of ACM Internet Measurement Conference (IMC), November 2011Google Scholar
  5. 5.
    Donnet, B., Luckie, M., Mérindol, P., Pansiot, J.J.: Revealing MPLS tunnels obscured by traceroute. ACM SIGCOMM Comput. Commun. Rev. 42(2), 87–93 (2012)CrossRefGoogle Scholar
  6. 6.
    Pathak, A., Zhang, M., Hu, Y.C., Mahajan, R., Maltz, D.: Latency inflation with MPLS-based traffic engineering. In: Proceedings of ACM Internet Measurement Conference (IMC), November 2011Google Scholar
  7. 7.
    Vanaubel, Y., Mérindol, P., Pansiot, J.J., Donnet, B.: MPLS under the microscope: revealing actual transit path diversity. In: Proceedings of ACM Internet Measurement Conference (IMC), October 2015Google Scholar
  8. 8.
    Rosen, E., Visanathan, A., Callon, R.: Multiprotocol label switching architecture. RFC 3031, Internet Engineering Task Force, January 2001Google Scholar
  9. 9.
    Andersson, L., Asati, R.: Multiprocotol label switching (MPLS) label stack entry: EXP field renamed to traffic class field. RFC 5462, Internet Engineering Task Force, February 2009Google Scholar
  10. 10.
    Rosen, E., Tappan, D., Fedorkow, G., Rekhter, Y., Farinacci, D., Li, T., Conta, A.: MPLS label stack encoding. RFC 3032, Internet Engineering Task Force, January 2001Google Scholar
  11. 11.
    Agarwal, P., Akyol, B.: Time-to-live (TTL) processing in multiprotocol label switching (MPLS) networks. RFC 3443, Internet Engineering Task Force, January 2003Google Scholar
  12. 12.
    Andersson, L., Minei, I., Thomas, T.: LDP specifications. RFC 5036, Internet Engineering Task Force, October 2007Google Scholar
  13. 13.
    Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V., Swallow, G.: RSVP-TE: extensions to RSVP for LSP tunnels. RFC 3209, Internet Engineering Task Force, December 2001Google Scholar
  14. 14.
    Muthukrishnan, K., Malis, A.: A core MPLS IP VPN architecture. RFC 2917, Internet Engineering Task Force, September 2000Google Scholar
  15. 15.
    George, W., Pignataro, C.: Gap analysis for operating IPv6-only MPLS networks. RFC 7439, Internet Engineering Task Force, January 2015Google Scholar
  16. 16.
    Asati, R., Pignataro, C., Raza, K., Manral, V., Papneja, R.: Updates to LDP for IPv6. RFC 7552, Internet Engineering Task Force, June 2015Google Scholar
  17. 17.
    De Clercq, J., Ooms, D., Carugi, M., Le Faucheur, F.: BGP-MPLS IP virtual private network (VPN) extension for IPv6 VPN. RFC 4659, Internet Engineering Task Force, September 2006Google Scholar
  18. 18.
    De Clercq, J., Ooms, D., Prevost, S., Le Faucheur, F.: Connecting IPv6 islands over IPv4 MPLS using IPv6 provider edge routers (6PE). RFC 4798, Internet Engineering Task Force, February 2007Google Scholar
  19. 19.
    Bonica, R., Gan, D., Tappan, D., Pignataro, C.: ICMP extensions for multiprotocol label switching. RFC 4950, Internet Engineering Task Force, August 2007Google Scholar
  20. 20.
    Hinden, R., Deering, S.: IP version 6 addressing architecture. RFC 4291, Internet Engineering Task Force, February 2006Google Scholar
  21. 21.
    CAIDA: The CAIDA UCSD IPv6 topology dataset, September 2015. http://www.caida.org/data/active/ipv6_allpref_topology_dataset.xml
  22. 22.
    Augustin, B., Cuvellier, X., Orgogozo, B., Viger, F., Friedman, T., Latapy, M., Magnien, C., Teixeira, R.: Avoiding traceroute anomalies with Paris traceroute. In: Proceedings of ACM Internet Measurement Conference (IMC), October 2006Google Scholar
  23. 23.
    Luckie, M.: Scamper: a scalable and extensible packet prober for active measurement of the Internet. In: Proceedings of ACM Internet Measurement Conference, November 2010Google Scholar
  24. 24.
    Giotsas, V., Luckie, M., Huffaker, B., Claffy, K.: IPv6 AS relationships,clique, and congruence. In: Proceedings of Passive and Active Measurement Conference (PAM), March 2015Google Scholar
  25. 25.
    Leber, M.: IPv6 Internet broken, Cogent/Telia/Hurricane not peering, October 2009. Nanog Mailing-list. http://mailman.nanog.org/pipermail/nanog/2009-October/014017.html
  26. 26.
    Cisco: Cisco IOS IPv6 provider edge router (6PE) over MPLS, October 2015. http://www.cisco.com/en/US/products/sw/iosswrel/ps1835/products_data_sheet09186a008052edd3.html#wp39913
  27. 27.
    Kompella, K., Drake, J., Amante, S., Henderickx, W., Yong, L.: The use of entropy labels in MPLS forwarding. RFC 6790, Internet Engineering Task Force, November 2012Google Scholar
  28. 28.
    Kompella, K., Hellers, M., Singh, R.: Multi-path label switched paths signaled using RSVP-TE. Internet Draft (Work in Progress) draft-kompella-mpls-rsvp-ecmp-06, Internet Engineering Task Force, March 2015Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Yves Vanaubel
    • 1
    Email author
  • Pascal Mérindol
    • 2
  • Jean-Jacques Pansiot
    • 2
  • Benoit Donnet
    • 1
  1. 1.Université de LiègeLiègeBelgium
  2. 2.Université de StrasbourgStrasbourgFrance

Personalised recommendations