The VINEYARD Approach: Versatile, Integrated, Accelerator-Based, Heterogeneous Data Centres

  • Christoforos KachrisEmail author
  • Dimitrios Soudris
  • Georgi Gaydadjiev
  • Huy-Nam Nguyen
  • Dimitrios S. Nikolopoulos
  • Angelos Bilas
  • Neil Morgan
  • Christos Strydis
  • Christos Tsalidis
  • John Balafas
  • Ricardo Jimenez-Peris
  • Alexandre Almeida
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9625)


Emerging web applications like cloud computing, Big Data and social networks have created the need for powerful centres hosting hundreds of thousands of servers. Currently, the data centres are based on general purpose processors that provide high flexibility buts lack the energy efficiency of customized accelerators. VINEYARD aims to develop an integrated platform for energy-efficient data centres based on new servers with novel, coarse-grain and fine-grain, programmable hardware accelerators. It will, also, build a high-level programming framework for allowing end-users to seamlessly utilize these accelerators in heterogeneous computing systems by employing typical data-centre programming frameworks (e.g. MapReduce, Storm, Spark, etc.). This programming framework will, further, allow the hardware accelerators to be swapped in and out of the heterogeneous infrastructure so as to offer high flexibility and energy efficiency. VINEYARD will foster the expansion of the soft-IP core industry, currently limited in the embedded systems, to the data-centre market. VINEYARD plans to demonstrate the advantages of its approach in three real use-cases (a) a bio-informatics application for high-accuracy brain modeling, (b) two critical financial applications, and (c) a big-data analysis application.


Hardware accelerators Data centre Heterogeneous Big data 



This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 687628.


  1. 1.
    Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2014–2019. White Paper, Cisco, IncGoogle Scholar
  2. 2.
    Esmaeilzadeh, H., Blem, E., Amant, R.S., Sankaralingam, Karthikeyan, Burger, Doug: Power challenges may end the multicore era. Commun. ACM 56(2), 93–102 (2013)CrossRefGoogle Scholar
  3. 3.
    Esmaeilzadeh, H., Blem, E., St, R., Amant, K.S., Burger, D.: Dark silicon and the end of multicore scaling. In: Proceedings of the 38th Annual International Symposium on Computer Architecture, ISCA 2011, pp. 365–376. ACM, New York (2011)Google Scholar
  4. 4.
    Hardavellas, N., Ferdman, M., Falsafi, B., Ailamaki, A.: Toward dark silicon in servers. IEEE Micro 31(4), 6–15 (2011)CrossRefGoogle Scholar
  5. 5.
    Lindtjorn, O., Clapp, R., Pell, O., Haohuan, F., Flynn, M., Mencer, O.: Beyond traditional microprocessors for geoscience high-performance computing applications. IEEE Micro 31(2), 41–49 (2011)CrossRefGoogle Scholar
  6. 6.
    Weston, S., Spooner, J., Racaniere, S., Mencer, O.: Rapid computation of value and risk for derivatives portfolios. Concurr. Comput. Pract. Exper. 24(8), 880–894 (2012)CrossRefGoogle Scholar
  7. 7.
    Clark, D. Maxeler makes waves with dataflow design. Wall Street J. Blog 13 (2011)Google Scholar
  8. 8.
    Bueno, J., Martorell, X., Badia, R.M., Ayguadé, E., Labarta, J.: Implementing OmpSs support for regions of data in architectures with multiple address spaces. In: Proceedings of the 27th International ACM Conference on International Conference on Supercomputing, ICS 2013, pp. 359–368. ACM, New York (2013)Google Scholar
  9. 9.
    Shan, Y., Wang, B., Jing Yan, Y., Wang, N.X., Yang, H.: FPMR: MapReduce framework on FPGA. In: Proceedings of the 18th Annual ACM/SIGDA International Symposium on Field Programmable Gate Arrays, FPGA 2010, pp. 93–102. ACM, New York (2010)Google Scholar
  10. 10.
    Athanas, P., Kepa, K., Shagrithaya, K.: Enabling development of OpenCL applications on FPGA platforms. In: Proceedings of the IEEE 24th International Conference on Application-Specific Systems, Architectures and Processors (ASAP), ASAP 2013, pp. 26–30. IEEE Computer Society, Washington, DC (2013)Google Scholar
  11. 11.
    Owaida, M., Bellas, N., Daloukas, K., Antonopoulos, C.D.: Synthesis of platform architectures from OpenCL programs. In: Proceedings of the IEEE 19th Annual International Symposium on Field-Programmable Custom Computing Machines, FCCM 2011, pp. 186–193. IEEE Computer Society, Washington, DC (2011)Google Scholar
  12. 12.
    Pan, H., Hindman, B., Asanović, K.: Composing parallel software efficiently with lithe. In: Proceedings of the 31st ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2010, pp. 376–387. ACM, New York (2010)Google Scholar
  13. 13.
    Becchi, M., Sajjapongse, K., Graves, I., Procter, A., Ravi, V., Chakradhar, S.: A virtual memory based runtime to support multi-tenancy in clusters with GPUs. In: Proceedings of the 21st International Symposium on High-Performance Parallel and Distributed Computing, HPDC 2012, pp. 97–108. ACM, New York (2012)Google Scholar
  14. 14.
    Wang, W., Bolic, M., Parri, J.: pvFPGA: accessing an FPGA-based hardware accelerator in a paravirtualized environment. In: Proceedings of the Ninth IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis, CODES+ISSS 2013, pp. 10:1–10:9. IEEE Press, Piscataway (2013)Google Scholar
  15. 15.
    Chen, F., Shan, Y., Zhang, Y., Wang, Y., Franke, H., Chang, X., Wang, K.: Enabling FPGAs in the cloud. In: Proceedings of the 11th ACM Conference on Computing Frontiers, CF 2014, pp. 3:1–3:10. ACM, New York (2014)Google Scholar
  16. 16.
    Smaragdos, G., Isaza, S., van Eijk, M.F., Sourdis, I., Strydis, C.: FPGA-based biophysically-meaningful modeling of Olivocerebellar neurons. In: Proceedings of the ACM/SIGDA International Symposium on Field-programmable Gate Arrays, FPGA 2014, pp. 89–98. ACM, New York (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Christoforos Kachris
    • 1
    Email author
  • Dimitrios Soudris
    • 1
  • Georgi Gaydadjiev
    • 2
  • Huy-Nam Nguyen
    • 3
  • Dimitrios S. Nikolopoulos
    • 4
  • Angelos Bilas
    • 5
  • Neil Morgan
    • 6
  • Christos Strydis
    • 7
  • Christos Tsalidis
    • 8
  • John Balafas
    • 9
  • Ricardo Jimenez-Peris
    • 10
  • Alexandre Almeida
    • 11
  1. 1.Institute of Computer and Communications Systems (ICCS)AthensGreece
  2. 2.Maxeler TechnologiesLondonUK
  3. 3.Bull SystemsLes Clayes-sous-BoisFrance
  4. 4.Queen’s University of Belfast (QUB)BelfastUK
  5. 5.Foundation for Research and Technology (FORTH)HeraklionGreece
  6. 6.The Hartree CentreWarringtonUK
  7. 7.Neurasmus BVRotterdamThe Netherlands
  8. 8.Neurocom LuxembourgLuxembourg CityLuxembourg
  9. 9.ATHEXAthensGreece
  10. 10.LeanXcaleBruneteSpain
  11. 11.GlobazOliveira de AzeméisPortugal

Personalised recommendations