Advertisement

Conservation: New Potential for Stable Isotope Analysis?

  • James E. LoudonEmail author
  • Matt Sponheimer
Chapter
Part of the Developments in Primatology: Progress and Prospects book series (DIPR)

Abstract

This chapter examines the potential for using stable carbon and nitrogen isotope analysis as a tool for primate conservation. An animal’s stable isotope composition reflects the food it consumes and is permanently recorded in its tissue and excreta. One of the strengths of stable isotope analysis is its ability to examine broad dietary changes through time and space. This is extremely useful for ecologists interested in migratory behavior or dietary shifts due to environmental change or human influence. Among primates, researchers have documented geographic variation in diet linked to local vegetation and have explored dietary change through time by comparing the stable isotope compositions of existing populations to museum specimens (i.e., historic populations). Primatologists have also used stable isotope analysis to compare the diets of primate groups with varying degrees of access to human foods. Since stable isotopes record diet and dietary change, we discuss the promise of this technique for conservation with an emphasis on nonhuman primates. Like other methods available to conservationists, stable isotope analysis is most useful when interpreted in a broader historical and ecological context, and when coupled with behavioral observations, input from local stakeholders, and documentation of habitat loss, anthropogenic impacts, and disease ecology.

Keywords

Stable isotope analysis Conservation Anthropogenic disturbance Nonhuman primates 

References

  1. Alisauskas, R. T., & Hobson, K. A. (1993). Determination of lesser snow goose diets and winter distribution using stable isotope analysis. The Journal of Wildlife Management, 51(1), 49–54.CrossRefGoogle Scholar
  2. Ambrose, S. H., & DeNiro, M. J. (1986). The isotopic ecology of east African mammals. Oecologia, 69(3), 395–406.CrossRefGoogle Scholar
  3. Ambrose, S. H., & Norr, L. (1993). Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. In J. Lambert & G. Grupe (Eds.), Prehistoric human bone: Archaeology at the molecular level (pp. 1–37). Berlin, Germany: Springer.CrossRefGoogle Scholar
  4. Amundson, R., Austin, A., Schuur, E., Yoo, K., Matzek, V., Kendall, C., et al. (2003). Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochemical Cycles, 17(1).Google Scholar
  5. Bateman, A. S., & Kelly, S. D. (2007). Fertilizer nitrogen isotope signatures. Isotopes in Environmental and Health Studies, 43(3), 237–247.CrossRefPubMedGoogle Scholar
  6. Bearhop, S., Adams, C. E., Waldron, S., Fuller, R. A., & MacLeod, H. (2004). Determining trophic niche width: A novel approach using stable isotope analysis. Journal of Animal Ecology, 73(5), 1007–1012.CrossRefGoogle Scholar
  7. Best, P., & Schell, D. (1996). Stable isotopes in southern right whale (Eubalaena australis) baleen as indicators of seasonal movements, feeding and growth. Marine Biology, 124(4), 483–494.CrossRefGoogle Scholar
  8. Borchert, R., Rivera, G., & Hagnauer, W. (2002). Modification of vegetative phenology in a tropical semi-deciduous forest by abnormal drought and rain. Biotropica, 34(1), 27–39.CrossRefGoogle Scholar
  9. Byrne, R. W., Whitten, A., Henzi, S. P., & McCulloch, F. M. (1993). Nutritional constraints on mountain baboons (Papio ursinus): Implications for baboon socioecology. Behavioral Ecology and Sociobiology, 33(4), 223–246.CrossRefGoogle Scholar
  10. Cerling, T. E., Harris, J. M., & Passey, B. H. (2003). Diets of east African Bovidae based on stable isotope analysis. Journal of Mammalogy, 84(2), 456–470.CrossRefGoogle Scholar
  11. Cerling, T. E., Wittemyer, G., Rasmussen, H. B., Vollrath, F., Cerling, C. E., Robinson, T. J., et al. (2006). Stable isotopes in elephant hair document migration patterns and diet changes. Proceedings of the National Academy of Sciences of the United States of America, 103(2), 371–373.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cernusak, L. A., Tcherkez, G., Keitel, C., Cornwell, W. K., Santiago, L. S., Knohl, A., et al. (2009). Why are non-photosynthetic tissues generally 13C enriched compared with leaves in C3 plants? Review and synthesis of current hypotheses. Functional Plant Biology, 36(3), 199–213.CrossRefGoogle Scholar
  13. Chamberlain, C. P., Waldbauer, J. R., Foxx-Dobbs, K., Newsome, S. D., Koch, P. L., Smith, D. R., et al. (2005). Pleistocene to recent dietary shifts in California Condors. Proceedings of the National Academy of Sciences of the United States of America, 102(46), 16707–16711.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Codron, J., Codron, D., Lee-Thorp, J. A., Sponheimer, M., Bond, W. J., de Ruiter, D., et al. (2005). Taxonomic, anatomical, and spatio-temporal variations in the stable carbon and nitrogen isotopic compositions of plants from an African savanna. Journal of Archaeological Science, 32(12), 1757–1772.CrossRefGoogle Scholar
  15. Codron, D., Codron, J., Lee-Thorp, J. A., Sponheimer, M., de Ruiter, R., & Brink, J. S. (2006a). Dietary Variation in impala (Aepyceros melampus) recorded by carbon isotope composition of feces. Acta Zoologica Sinica, 52(6), 1015–1025.Google Scholar
  16. Codron, D., Lee-Thorp, J. A., Sponheimer, M., de Ruiter, D., & Codron, J. (2008). What insights can baboon feeding ecology provide for early hominin niche differentiation? International Journal of Primatology, 29(3), 757–772.CrossRefGoogle Scholar
  17. Codron, D., Lee‐Thorp, J. A., Sponheimer, M., de Ruiter, D., & Codron, J. (2006b). Inter‐and intrahabitat dietary variability of chacma baboons (Papio ursinus) in South African savannas based on fecal δ13C, δ15N, and %N. American Journal of Physical Anthropology, 129(2), 204–214.CrossRefPubMedGoogle Scholar
  18. Copeland, S. R., Sponheimer, M., de Ruiter, D. J., Lee-Thorp, J. A., Codron, D., le Roux, P. J., et al. (2011). Strontium isotope evidence for landscape use by early hominins. Nature, 474(7349), 76–78.CrossRefPubMedGoogle Scholar
  19. Cormie, A. B., & Schwarcz, H. P. (1996). Effects of climate on deer bone δ15N and δ13C: Lack of precipitation effects on δ15N for animals consuming low amounts of C4 plants. Geochimica et Cosmochimica Acta, 60(21), 4161–4166.CrossRefGoogle Scholar
  20. Cowlishaw, G., & Dunbar, R. (2000). Primate conservation biology. Chicago: The University of Chicago Press.Google Scholar
  21. Craine, J. M., Elmore, A. J., Aidar, M. P. M., Bustamante, M., Dawson, T. E., Hobbie, E. A., et al. (2009). Global patterns of foliar nitrogen isotopes and their relationships with clime, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytologist, 183(4), 980–992.CrossRefPubMedGoogle Scholar
  22. Crowley, B. E. (2012). Stable isotope techniques and applications for primatologists. International Journal of Primatology, 33(3), 673–701.CrossRefGoogle Scholar
  23. Crowley, B. E., Godfrey, L. R., Guilderson, T. P., Zermeno, P., Koch, P. L., & Dominy, N. J. (2012). Extinction and ecological retreat in a community of primates. Proceedings of the Royal Society B-Biological Sciences, 279(1742), 3597–3605.CrossRefPubMedCentralGoogle Scholar
  24. Crowley, B. E., Thorén, S., Rasoazanabary, E., Vogel, E. R., Barrett, M. A., Zohdy, S., et al. (2011). Explaining geographical variation in the isotope composition of mouse lemurs (Microcebus). Journal of Biogeography, 38(11), 2106–2121.CrossRefGoogle Scholar
  25. Cuozzo, F. P., & Sauther, M. L. (2006). Temporal change in tooth size among ringtailed lemurs (Lemur catta) at the Beza Mahafaly special reserve, Madagascar: Effects of an environmental fluctuation. In A. Jolly, R. W. Sussman, N. Koyama, & H. Rasamimanana (Eds.), Ringtailed lemur biology (pp. 343–366). New York: Springer.CrossRefGoogle Scholar
  26. Dammhahn, M., & Kappeler, P. M. (2010). Scramble or contest competition over food in solitarily foraging mouse lemurs (Microcebus spp.): New insights from stable isotopes. American Journal of Physical Anthropology, 141(2), 181–189.PubMedGoogle Scholar
  27. Dammhahn, M., & Kappeler, P. M. (2014). Stable isotope analyses reveal dense trophic species packing and clear niche differentiation in a Malagasy primate community. American Journal of Physical Anthropology, 153(2), 249–259.CrossRefPubMedGoogle Scholar
  28. DeNiro, M., & Epstein, S. (1976). You are what you eat (plus a few‰): The carbon isotope cycle in food chains. Geological Society of America, 6, 834.Google Scholar
  29. DeNiro, M. J., & Epstein, S. (1981). Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta, 45(3), 341–351.CrossRefGoogle Scholar
  30. Dewar, R. E., & Richard, A. F. (2007). Evolution in the hypervariable environment of Madagascar. Proceedings of the National Academy of Sciences of the United States of America, 104(34), 13723–13727.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ehleringer, J., Field, C., Lin, Z., & Kuo, C. (1986). Leaf carbon isotope and mineral composition in subtropical plants along an irradiance cline. Oecologia, 70(4), 520–526.CrossRefGoogle Scholar
  32. Fleagle, J. G., Janson, C., & Reed, K. (1999). Primate communities. Cambridge, England: Cambridge University Press.CrossRefGoogle Scholar
  33. Fox-Dobbs, K., Stidham, T. A., Bowen, G. J., Emslie, S. D., & Koch, P. L. (2006). Dietary controls on extinction versus survival among avian megafauna in the late Pleistocene. Geology, 34(8), 685–688.CrossRefGoogle Scholar
  34. Fry, B. (2006). Stable isotope ecology. New York: Springer.CrossRefGoogle Scholar
  35. Ganzhorn, J. U. (1988). Food partitioning among Malagasy primates. Oecologia, 75(3), 436–450.CrossRefGoogle Scholar
  36. Gautier-Hion, A., Emmons, L., & Dubost, G. (1980). A comparison of the diets of three major groups of primary consumers of Gabon (primates, squirrels and ruminants). Oecologia, 45(2), 182–189.CrossRefGoogle Scholar
  37. Handley, L., Austin, A., Stewart, G., Robinson, D., Scrimgeour, C., Raven, J., et al. (1999). The 15N natural abundance (δ15N) of ecosystem samples reflects measures of water availability. Functional Plant Biology, 26(2), 185–199.Google Scholar
  38. Hobson, K. A. (1999). Tracing origins and migration of wildlife using stable isotopes: A review. Oecologia, 120(3), 314–326.CrossRefGoogle Scholar
  39. Hobson, K. A., Barnett-Johnson, R., & Cerling, T. (2010). Using isoscapes to track animal migration. In J. B. West, G. J. Bowen, T. E. Dawson, & K. P. Tu (Eds.), Isoscapes: Understanding movement, pattern, and process on Earth through isotope mapping (pp. 273–298). New York: Springer.CrossRefGoogle Scholar
  40. Hobson, K. A., Wassenaar, L. I., & Taylor, O. R. (1999). Stable isotopes (δD and δ13C) are geographic indicators of natal origins of monarch butterflies in eastern North America. Oecologia, 120(3), 397–404.CrossRefGoogle Scholar
  41. Hutchinson, G. (1957). The multivariate niche. Cold Spring Harbor Symposia on Quantitative Biology, 22, 415–421.CrossRefGoogle Scholar
  42. Hutchinson, G. E. (1978). An introduction to population ecology. New Haven, CT: Yale University Press.Google Scholar
  43. Jolly, C. J. (1970). The Seed-eaters: A New model of hominid differentiation based on a baboon analogy. Man, 5(1), 1–26.CrossRefGoogle Scholar
  44. Jolly, C. J. (2001). A proper study for mankind: Analogies from the papionin monkeys and their implications for human evolution. American Journal of Physical Anthropology, 116(S33), 177–204.CrossRefGoogle Scholar
  45. Killingley, J. S. (1980). Migrations of California gray whales tracked by oxygen-18 variations in their epizoic barnacles. Science, 207(4432), 759–760.CrossRefPubMedGoogle Scholar
  46. Killingley, J. S., & Lutcavage, M. (1983). Loggerhead turtle movements reconstructed from 18O and 13C profiles from commensal barnacle shells. Estuarine, Coastal and Shelf Science, 16(3), 345–349.CrossRefGoogle Scholar
  47. Kluge, M., & Ting, I. (1978). Crassulacean acid metabolism: An ecological analysis (Ecological studies series, Vol. 30, p. 209). Berlin, Germany: Springer.Google Scholar
  48. Koch, P. L., Fox-Dobbs, K., & Newsome, S. D. (2009). The isotopic ecology of fossil vertebrates and conservation paleobiology. Conservation Paleobiology: Using the Past to Manage for the Future Paleontological Society Papers, 15, 96–112.Google Scholar
  49. Kohn, M. J. (2010). Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. Proceedings of the National Academy of Sciences of the United States of America, 107(46), 19691–19695.Google Scholar
  50. LaFleur, M., & Gould, L. (2009). Feeding outside the forest: The importance of crop raiding and an invasive weed in the diet of gallery forest ring-tailed lemurs (Lemur catta) following a cyclone at the Beza Mahafaly special reserve, Madagascar. Folia Primatologica, 80(3), 233–246.CrossRefGoogle Scholar
  51. Lee-Thorp, J. A., Der Merwe, V., Nikolaas, J., & Brain, C. (1989). Isotopic evidence for dietary differences between two extinct baboon species from Swartkrans. Journal of Human Evolution, 18(3), 183–189.CrossRefGoogle Scholar
  52. Lee-Thorp, J. A., van der Merwe, N. J., & Brain, C. (1994). Diet of Australopithecus robustus at Swartkrans from stable carbon isotopic analysis. Journal of Human Evolution, 27(4), 361–372.CrossRefGoogle Scholar
  53. Loudon, J. E., Grobler, J. P., Sponheimer, M., Moyer, K., Lorenz, J. G., & Turner, T. R. (2014a). Using the stable carbon and nitrogen isotope compositions of vervet monkeys (Chlorocebus pygerythrus) to examine questions in ethnoprimatology. PLoS One, 9(7), e100758.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Loudon, J. E., Sauther, M. L., Schwagerl, K., Cuozzo, F. P., & Sponheimer, M. (2014b). Tough times don’t last, tough lemurs do: Using δ13C and δ15N to examine the response of Lemur catta to natural disasters at the Beza Mahafaly Special Reserve. American Journal of Physical Anthropology, 153(S58), 171.Google Scholar
  55. Loudon, J. E., Sponheimer, M., Sauther, M. L., & Cuozzo, F. P. (2007). Intraspecific variation in hair δ13C and δ15N values of ring‐tailed lemurs (Lemur catta) with known individual histories, behavior, and feeding ecology. American Journal of Physical Anthropology, 133(3), 978–985.Google Scholar
  56. Macho, G. A., & Lee-Thorp, J. A. (2014). Niche partitioning in sympatric Gorilla and Pan from Cameroon: Implications for life history strategies and for reconstructing the evolution of hominin life history. PLoS One, 9(7), e102794.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Marshall, J. D., Brooks, J. D., & Lajtha, K. (2007). Sources of variation in the stable isotopic composition of plants. In R. Michener & K. Lajtha (Eds.), Stable Isotopes in ecology and environmental science (2nd ed., pp. 22–60). Oxford, England: Blackwell.CrossRefGoogle Scholar
  58. Martin, J. E., Vance, D., & Balter, V. (2015). Magnesium stable isotope ecology using mammal tooth enamel. Proceedings of the National Academy of Sciences of the United States of America, 112(2), 430–435.CrossRefPubMedGoogle Scholar
  59. Medina, E., & Minchin, P. (1980). Stratification of δ13C values of leaves in Amazonian rain forests. Oecologia, 45(3), 377–378.CrossRefGoogle Scholar
  60. Michener, R. H., & Kaufman, L. (2007). Stable isotope ratios as tracers in marine food webs: An update. In R. Michener & K. Lajtha (Eds.), Stable isotopes in ecology and environmental science (2nd ed., pp. 238–282). Boston: Blackwell.CrossRefGoogle Scholar
  61. Nash, L. T. (1998). Vertical clingers and sleepers: Seasonal influences on the activities and substrate use of Lepilemur leucopus at Beza Mahafaly Special Reserve, Madagascar. Folia Primatologica, 69(1), 204–217.CrossRefGoogle Scholar
  62. Nelson, S. V. (2013). Chimpanzee fauna isotopes provide new interpretations of fossil ape and hominin ecologies. Proceedings of the Royal Society B: Biological Sciences, 280(1773), 20132324.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Newsome, S. D., Martinez del Rio, C., Bearhop, S., & Phillips, D. L. (2007). A niche for isotopic ecology. Frontiers in Ecology and the Environment, 5(8), 429–436.CrossRefGoogle Scholar
  64. Newsome, S. D., Ralls, K., Job, C. V. H., Fogel, M. L., & Cypher, B. L. (2010). Stable isotopes evaluate exploitation of anthropogenic foods by the endangered San Joaquin kit fox (Vulpes macrotis mutica). Journal of Mammalogy, 91(6), 1313–1321.CrossRefGoogle Scholar
  65. O’Leary, M. H. (1981). Carbon isotope fractionation in plants. Phytochemistry, 20(4), 553–567.CrossRefGoogle Scholar
  66. O’Leary, M. H. (1988). Carbon isotopes in photosynthesis. Bioscience, 38(5), 328–336.CrossRefGoogle Scholar
  67. O’Regan, H. J., Chenery, C., Lamb, A. L., Stevens, R. E., Rook, L., & Elton, S. (2008). Modern macaque dietary heterogeneity assessed using stable isotope analysis of hair and bone. Journal of Human Evolution, 55(4), 617–626.CrossRefPubMedGoogle Scholar
  68. Pate, F. D., & Anson, T. (2008). Stable nitrogen isotope values in arid‐land kangaroos correlated with mean annual rainfall: Potential as a palaeoclimatic indicator. International Journal of Osteoarchaeology, 18(3), 317–326.CrossRefGoogle Scholar
  69. Rakotondranary, S. J., Struck, U., Knoblauch, C., & Ganzhorn, J. U. (2011). Regional, seasonal and interspecific variation in 15N and 13C in sympatric mouse lemurs. Naturwissenschaften, 98(11), 909–917.CrossRefPubMedGoogle Scholar
  70. Sandberg, P. A., Loudon, J. E., & Sponheimer, M. (2012). Stable isotope analysis in primatology: A critical review. American Journal of Primatology, 74(11), 969–989.CrossRefPubMedGoogle Scholar
  71. Sauther, M. L., & Cuozzo, F. P. (2009). The impact of fallback foods on wild ring‐tailed lemur biology: A comparison of intact and anthropogenically disturbed habitats. American Journal of Physical Anthropology, 140(4), 671–686.CrossRefPubMedGoogle Scholar
  72. Schillaci, M. A., Castellini, J. M., Stricker, C. A., Jones-Engel, L., Lee, B. P., & O’Hara, T. M. (2014). Variation in hair δ13C and δ15N values in long-tailed macaques (Macaca fascicularis) from Singapore. Primates, 55(1), 25–34.CrossRefPubMedGoogle Scholar
  73. Schmidt, S., & Stewart, G. (2003). δ15N values of tropical savanna and monsoon forest species reflect root specialisations and soil nitrogen status. Oecologia, 134(4), 569–577.CrossRefPubMedGoogle Scholar
  74. Schoeninger, M. J. (2010). Toward a δ13C isoscape for primates. In J. B. West, G. J. Bowen, T. E. Dawson, & K. P. Tu (Eds.), Isoscapes: Understanding movement, pattern, and process on Earth through isotope mapping (pp. 319–333). New York: Springer.Google Scholar
  75. Schoeninger, M. J., & DeNiro, M. J. (1984). Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochimica et Cosmochimica Acta, 48(4), 625–639.CrossRefGoogle Scholar
  76. Schoeninger, M. J., Iwaniec, U. T., & Glander, K. E. (1997). Stable isotope ratios indicate diet and habitat use in new world monkeys. American Journal of Physical Anthropology, 103(1), 69–83.CrossRefPubMedGoogle Scholar
  77. Schoeninger, M. J., Iwaniec, U. T., & Nash, L. T. (1998). Ecological attributes recorded in stable isotope ratios of arboreal prosimian hair. Oecologia, 113(2), 222–230.CrossRefGoogle Scholar
  78. Schoeninger, M. J., Moore, J., & Sept, J. M. (1999). Subsistence strategies of two “savanna” chimpanzee populations: The stable isotope evidence. American Journal of Primatology, 49(4), 297–314.CrossRefPubMedGoogle Scholar
  79. Schurr, M. R., Fuentes, A., Luecke, E., Cortes, J., & Shaw, E. (2012). Intergroup variation in stable isotope ratios reflects anthropogenic impact on the Barbary macaques (Macaca sylvanus) of Gibraltar. Primates, 53(1), 31–40.CrossRefPubMedGoogle Scholar
  80. Sealy, J. C., Der Merwe, V., Nikolaas, J., Thorp, J. A. L., & Lanham, J. L. (1987). Nitrogen isotopic ecology in southern Africa: Implications for environmental and dietary tracing. Geochimica et Cosmochimica Acta, 51(10), 2707–2717.CrossRefGoogle Scholar
  81. Smith, C. C., Morgan, M. E., & Pilbeam, D. (2010). Isotopic ecology and dietary profiles of Liberian chimpanzees. Journal of Human Evolution, 58(1), 43–55.CrossRefPubMedGoogle Scholar
  82. Sponheimer, M., & Lee-Thorp, J. A. (1999). Isotopic evidence for the diet of an early hominid, Australopithecus africanus. Science, 283(5400), 368–370.CrossRefPubMedGoogle Scholar
  83. Sponheimer, M., Lee-Thorp, J. A., DeRuiter, D. J., Smith, J. M., van der Merwe, N. J., Reed, K., et al. (2003). Diets of southern African Bovidae: Stable isotope evidence. Journal of Mammalogy, 84(2), 471–479.CrossRefGoogle Scholar
  84. Sponheimer, M., Loudon, J. E., Codron, D., Howells, M. E., Pruetz, J. D., Codron, J., et al. (2006). Do “savanna” chimpanzees consume C4 resources? Journal of Human Evolution, 51(2), 128–133.CrossRefPubMedGoogle Scholar
  85. Sussman, R. W. (1992). Male life history and intergroup mobility among ringtailed lemurs (Lemur catta). International Journal of Primatology, 13(4), 395–413.CrossRefGoogle Scholar
  86. Sussman, R. W., Richard, A. F., Ratsirason, J., Sauther, M. L., Brockman, D. K., Lawler, R. R., et al. (2012). Bezà Mahafaly special reserve: A research site in southwestern Madagascar. In P. M. Kappeler & D. P. Watts (Eds.), Long-term field studies of primates (pp. 45–66). Berlin, Germany: Springer.CrossRefGoogle Scholar
  87. Thackeray, J., Henzi, S., & Brain, C. (1996). Stable carbon and nitrogen isotope analysis of bone collagen in Papio cynocephalus ursinus: Comparison with ungulates and Homo sapiens from southern and east African environments. South African Journal of Science, 92(4), 209–213.Google Scholar
  88. Tieszen, L. L., Boutton, T. W., Tesdahl, K., & Slade, N. A. (1983). Fractionation and turnover of stable carbon isotopes in animal tissues: Implications for δ13C analysis of diet. Oecologia, 57(1–2), 32–37.CrossRefGoogle Scholar
  89. Tieszen, L. L., & Fagre, T. (1993). Effect of diet quality and composition on the isotopic composition of respiratory CO2, bone collagen, bioapatite, and soft tissues. In J. B. Lambert & G. Grupe (Eds.), Prehistoric human bone: Archaeology at the molecular level (pp. 121–155). Berlin, Germany: Springer.CrossRefGoogle Scholar
  90. Virginia, R. A., & Delwiche, C. C. (1982). Natural 15N abundance of presumed N2-fixing and non-N2-fixing plants from selected ecosystems. Oecologia, 54(3), 317–325.CrossRefGoogle Scholar
  91. Wada, E., Terazaki, M., Kabaya, Y., & Nemoto, T. (1987). 15N and 13C abundances in the Antarctic Ocean with emphasis on the biogeochemical structure of the food web. Deep Sea Research Part A Oceanographic Research Papers, 34(5), 829–841.CrossRefGoogle Scholar
  92. Winter, K. (1979). δ13C values of some succulent plants from Madagascar. Oecologia, 40(1), 103–112.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of AnthropologyEast Carolina UniversityGreenvilleUSA
  2. 2.Department of Anthropology and Nutritional and Isotopic Ecology Lab (NIEL)University of ColoradoBoulderUSA

Personalised recommendations