A Survey of Atanassov’s Intuitionistic Fuzzy Relations

  • Humberto BustinceEmail author
  • Edurne Barrenechea
  • Miguel Pagola
  • Javier Fernandez
  • Raul Orduna
  • Javier Montero
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 339)


In this chapter we review several properties of Atanassov’s intuitionistic fuzzy relations, recalling the main concepts related to Atanassov’s intuitionistic fuzzy relations and the main properties that can be demanded to such conepts. We also consider the use of Atanassov’s operators over such relations.



This work has been supported by projects TIN2013-40765-P and TIN2012-32482 of the Spanish Ministry of Science.


  1. 1.
    K. Atanassov, Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    K. Atanassov, Review and new results on intuitionistic fuzzy sets. IM-MFAIS 1 (1988)Google Scholar
  3. 3.
    K. Atanassov, Two operators on intuitionistic fuzzy sets. Comptes rendus de l’Academie bulgare des Sciences, Tome 41 (1988)Google Scholar
  4. 4.
    K. Atanassov, Intuitionistic Fuzzy Sets. Theory and Applications (Physica-Verlag, Heidelberg, 1999)CrossRefzbMATHGoogle Scholar
  5. 5.
    K. Atanassov, Intuitionistic fuzzy sets, VII ITKR’s Session, Deposed in Central Science and Technology. Library of the Bulgarian academy of sciences, Sofia, 1983, pp. 1684–1697Google Scholar
  6. 6.
    K.T. Atanassov, More on intuitionistic fuzzy sets. Fuzzy Sets Syst. 33, 37–45 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    G. Beliakov, H. Bustince, S. James, T. Calvo, J. Fernandez, Aggregation for Atanassovs intuitionistic and interval valued fuzzy sets: the median operator. IEEE Trans. Fuzzy Syst. 20(3), 487–498 (2012)CrossRefGoogle Scholar
  8. 8.
    U. Bentkowska, H. Bustince, A. Jurio, M. Pagola, B. Pekala, Decision making with an interval-valued fuzzy preference relation and admissible orders. Appl. Soft Comput. 35, 792–801 (2015)CrossRefGoogle Scholar
  9. 9.
    T. Buhaescu, Some observations on intuitionistic fuzzy relations. Itimerat Seminar on Functional Equations, 1989, 111–118Google Scholar
  10. 10.
    P. Burillo, H. Bustince, Estructuras algebraicas en conjuntos IFS, II Congreso Nacional ESTYLF, Boadilla del Monte, Madrid, Spain, 1992, pp. 135–147Google Scholar
  11. 11.
    P. Burillo, H. Bustince, Structures on intuitionistic fuzzy relations. Fuzzy Sets Syst. 78, 293–303 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    P. Burillo, H. Bustince, Construction theorems for intuitionistic fuzzy sets. Fuzzy Sets Syst. 84, 271–281 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    P. Burillo, H. Bustince, Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets. Fuzzy Sets Syst. 78, 305–316 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    P. Burillo, H. Bustince, Intuitionistic fuzzy relations (Part I). Mathware Soft Comput. 2, 5–38 (1995)MathSciNetzbMATHGoogle Scholar
  15. 15.
    P. Burillo, H. Bustince, Orderings in the referential set induced by an intuitionistic fuzzy relation. Notes IFS I, 93–103 (1995)MathSciNetzbMATHGoogle Scholar
  16. 16.
    H. Bustince, Conjuntos Intuicionistas e Intervalo valorados Difusos: Propiedades y Construcción, Relaciones Intuicionistas Fuzzy, Thesis, Universidad Pública de Navarra (1994)Google Scholar
  17. 17.
    H. Bustince, Construction of intuitionistic fuzzy relations with predetermined properties. Fuzzy Sets Syst. 109, 379–403 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    H. Bustince, P. Burillo, Intuitionistic fuzzy relations (Part II). Mathware Soft Comput. 2, 117–148 (1995)MathSciNetzbMATHGoogle Scholar
  19. 19.
    H. Bustince, P. Burillo, Perturbation of intuitionistic fuzzy relations. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 9(1), 81–103 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    L. De Miguel, H. Bustince, J. Fernandez, E. Induráin, A. Kolesárová, R. Mesiar, Construction of admissible linear orders for interval-valued Atanassov intuitionistic fuzzy sets with an application to decision making. Inf. Fusion 27, 189–197 (2016)CrossRefGoogle Scholar
  21. 21.
    G. Deschrijver, E.E. Kerre, On the composition of intuitionistic fuzzy relations. Fuzzy Sets Syst. 136, 333–361 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    J. Drewniak, U. Dudziak, Aggregations preserving classes of fuzzy relations. Kybernetika 41(3), 265–284 (2005)MathSciNetzbMATHGoogle Scholar
  23. 23.
    J. Drewniak, U. Dudziak, Preservation of properties of fuzzy relations during aggregation processes. Kybernetika 43(2), 115–132 (2007)MathSciNetzbMATHGoogle Scholar
  24. 24.
    U. Dudziak, B. Pekala, Equivalent bipolar fuzzy relations. Fuzzy Sets Syst. 161, 234–253 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    U. Dudziak, Weak and graded properties of fuzzy relations in the context of aggregation process. Fuzzy Sets Syst. 161, 216–233 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    A. Kaufmann, Introduction a la Théorie des Sous-Ensembles Flous, vols. I–IV (Masson. Paris, 1977)Google Scholar
  27. 27.
    P. Melo-Pinto, P. Couto, H. Bustince, E. Barrenechea, M. Pagola, J. Fernandez, mage segmentation using Atanassovs intuitionistic fuzzy sets. Expert Syst. Appl. 40(1), 15–26 (2013)CrossRefGoogle Scholar
  28. 28.
    N.R. Pal, H. Bustince, M. Pagola, U.K. Mukherjee, D.P. Goswami, G. Beliakov, Uncertainties with Atanassovs intuitionistic fuzzy sets: fuzziness and lack of knowledge. Inf. Sci. 228, 61–74 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    B. Pekala, Properties of Atanassov’s intuitionistic fuzzy relations and Atanassov’s operators. Inf. Sci. 213, 84–93 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    E. Szmidt, I. Kacprzyk, Intuitionistic fuzzy sets in group decision making. Notes IFS 2, 15–32 (1996)MathSciNetzbMATHGoogle Scholar
  31. 31.
    L.A. Zadeh, Similarity relations and fuzzy orderings. Inf. Sci. 3, 177–200 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    X. Zeshui, Intuitionistic preference relations and their application in group decision making. Inf. Sci. 177, 2363–2379 (2007)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Humberto Bustince
    • 1
    Email author
  • Edurne Barrenechea
    • 1
  • Miguel Pagola
    • 1
  • Javier Fernandez
    • 1
  • Raul Orduna
    • 2
  • Javier Montero
    • 3
  1. 1.Departamento of Automática y Computación and Institute of Smart CitiesUniversidad Publica de NavarraPamplonaSpain
  2. 2.Departamento of Automática y ComputaciónUniversidad Publica de NavarraPamplonaSpain
  3. 3.Department of Statistics and Operations Research I, Faculty of MathematicsUniversidad Complutense de MadridMadridSpain

Personalised recommendations