Fuzzy Logic and Information Fusion pp 135-153

Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 339) | Cite as

Soft Consensus Models in Group Decision Making

  • Ignacio Javier Perez
  • Francisco Javier Cabrerizo
  • Sergio Alonso
  • Francisco Chiclana
  • Enrique Herrera-Viedma
Chapter

Abstract

In group decision making problems, when a consensual solution is required, a natural question is how to measure the closeness among experts’ opinions in order to obtain the consensus level. To do so, different approaches have been proposed. Following this research line, several authors have introduced hard consensus measures varying between 0 (no consensus or partial consensus) and 1 (full consensus or complete agreement). However, consensus as a full and unanimous agreement is far from being achieved in real situations. So, in practice, a more realistic approach is to use some softer consensus measures, which assess the consensus degree in a more flexible way reflecting better all possible partial agreements obtained through the process. The aim of this chapter is to identify and describe the different existing approaches to compute soft consensus measures in fuzzy group decision making problems. Additionally, we analyze the current models and new challenges on this field.

References

  1. 1.
    S. Alonso, F.J. Cabrerizo, F. Chiclana, F. Herrera, E. Herrera-Viedma, Group decision-making with incomplete fuzzy linguistic preference relations. Int. J. Intell. Syst. 24(2), 201–222 (2009)CrossRefMATHGoogle Scholar
  2. 2.
    S. Alonso, E. Herrera-Viedma, F.J. Cabrerizo, F. Chiclana, F. Herrera, Visualizing consensus in group decision making situations, in Proceedings of the IEEE International Conference on Fuzzy Systems, pp. 1823–1828 (2007)Google Scholar
  3. 3.
    S. Alonso, I.J. Pérez, F.J. Cabrerizo, E. Herrera-Viedma, A linguistic consensus model for web 2.0 communities. Appl. Soft Comput. 13(1), 149–157 (2013)CrossRefGoogle Scholar
  4. 4.
    D. Ben-Arieh, Z. Chen, Linguistic-labels aggregation and consensus measure for autocratic decision making using group recommendations. IEEE Trans. Syst. Man Cybern.-Part A: Syst. Hum. 36(3), 558–568 (2006)CrossRefGoogle Scholar
  5. 5.
    J.C. Bezdek, B. Spillman, R. Spillman, A fuzzy relation space for group decision theory. Fuzzy Sets Syst. 1(4), 255–268 (1978)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    G. Bordogna, M. Fedrizzi, G. Pasi, A linguistic modeling of consensus in group decision making based on OWA operators. IEEE Trans. Syst. Man Cybern.-Part A: Syst. Hum. 27(1), 126–133 (1997)CrossRefGoogle Scholar
  7. 7.
    C.T. Butler, A. Rothstein, On Conflict and Consensus: A Handbook on Formal Consensus Decision Making (Takoma Park, 2006)Google Scholar
  8. 8.
    F.J. Cabrerizo, S. Alonso, E. Herrera-Viedma, A consensus model for group decision making problems with unbalanced fuzzy linguistic information. Int. J. Inf. Technol. Decis. Mak. 8(1), 109–131 (2009)CrossRefMATHGoogle Scholar
  9. 9.
    F.J. Cabrerizo, R. Heradio, I.J. Pérez, E. Herrera-Viedma, A selection process based on additive consistency to deal with incomplete fuzzy linguistic information. J. Univ. Comput. Sci. 16(1), 62–81 (2010)MathSciNetMATHGoogle Scholar
  10. 10.
    F.J. Cabrerizo, J.M. Moreno, I.J. Pérez, E. Herrera-Viedma, Analyzing consensus approaches in fuzzy group decision making: advantages and drawbacks. Soft. Comput. 14(5), 451–463 (2010)CrossRefGoogle Scholar
  11. 11.
    F.J. Cabrerizo, I.J. Pérez, E. Herrera-Viedma, Managing the consensus in group decision making in an unbalanced fuzzy linguistic context with incomplete information. Knowl.-Based Syst. 23(2), 169–181 (2010)CrossRefGoogle Scholar
  12. 12.
    F.J. Cabrerizo, E. Herrera-Viedma, W. Pedrycz, A method based on pso and granular computing of linguistic information to solve group decision making problems defined in heterogeneous contexts. Eur. J. Oper. Res. 230(3), 624–633 (2013)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    C. Carlsson, D. Ehrenberg, P. Eklund, M. Fedrizzi, P. Gustafsson, P. Lindholm, G. Merkuryeva, T. Riissanen, A.G.S. Ventre, Consensus in distributed soft environments. Eur. J. Oper. Res. 61(1–2), 165–185 (1992)CrossRefGoogle Scholar
  14. 14.
    F. Chiclana, E. Herrera-Viedma, F. Herrera, S. Alonso, Some induced ordered weighted averaging operators and their use for solving group decision making problems based on fuzzy preference relations. Eur. J. Oper. Res. 182(1), 383–399 (2007)CrossRefMATHGoogle Scholar
  15. 15.
    F. Chiclana, F. Mata, L. Martinez, E. Herrera-Viedma, S. Alonso, Integration of a consistency control module within a consensus model. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 16(Suppl. 1), 35–53 (2008)MathSciNetCrossRefGoogle Scholar
  16. 16.
    F. Chiclana, J.M. Tapia-Garcia, M.J. del Moral, E. Herrera-Viedma, A statistical comparative study of different similarity measures of consensus in group decision making. Inf. Sci. 221, 110–123 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    L. Coch, J.R.P. French, Overcoming resistance to change. Hum. Relat. 1(4), 512–532 (1948)CrossRefGoogle Scholar
  18. 18.
    V. Cutello, J. Montero, Fuzzy rationality measures. Fuzzy Sets Syst. 62(1), 39–54 (1994)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    M.M. Deza, E. Deza, Encyclopedia of Distances (Springer, New York, 2009)Google Scholar
  20. 20.
    D. Dubois, J.L. Koning, Social choice axioms for fuzzy set aggregation. Fuzzy Sets Syst. 43(3), 257–274 (1991)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    D. Dubois, H. Prade, C. Testemale, Weighted fuzzy pattern matching. Fuzzy Sets Syst. 28(3), 313–331 (1988)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    M. Fedrizzi, M. Fedrizzi, R.A. Marques-Pereira, On the issue of consistency in dynamical consensual aggregation, in Technologies for Constructing Intelligent Systems, ed. by B. Bouchon-Meunier, J. Gutierrez-Rios, L. Magdalena, R.R. Yager (Springer, New York, 2002), pp. 129–137Google Scholar
  23. 23.
    M. Fedrizzi, J. Kacprzyk, H. Nurmi, Consensus degrees under fuzzy majorities and fuzzy preferences using OWA (ordered weighted average) operators. Control Cybern. 22, 71–80 (1993)MathSciNetMATHGoogle Scholar
  24. 24.
    M. Fedrizzi, J. Kacprzyk, S. Zadrozny, An interactive multi-user decision support system for consensus reaching processes using fuzzy logic with linguistic quantifiers. Decis. Support Syst. 4(3), 313–327 (1988)CrossRefMATHGoogle Scholar
  25. 25.
    M. Fedrizzi, G. Pasi, Fuzzy logic approaches to consensus modeling in group decision making, in Intelligent Decision and Policy Making Support Systems, ed. by D. Ruan, F. Hardeman, K. Van Der Meer (Springer-Verlag, Berlin-Heidelberg, 2008), pp. 19–37CrossRefGoogle Scholar
  26. 26.
    J. Fodors, M. Roubens, Fuzzy Preference Modelling and Multicriteria Decision Support (Kluwer Academic Publishers, Dordrecht, 1994)CrossRefMATHGoogle Scholar
  27. 27.
    J.R.P. French, A formal theory of social power. Psychol. Rev. 63(3), 181–194 (1956)MathSciNetCrossRefGoogle Scholar
  28. 28.
    F. Harary, On the measurement of structural balance. Behav. Sci. 4(4), 316–323 (1959)MathSciNetCrossRefGoogle Scholar
  29. 29.
    F. Herrera, S. Alonso, F. Chiclana, E. Herrera-Viedma, Computing with words in decision making: foundations, trends and prospects. Fuzzy Optim. Decis. Making 8(4), 337–364 (2009)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    F. Herrera, E. Herrera-Viedma, J.L. Verdegay, A model of consensus in group decision making under linguistic assessments. Fuzzy Sets Syst. 78(1), 73–87 (1996)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    F. Herrera, E. Herrera-Viedma, J.L. Verdegay, A rational consensus model in group decision making using linguistic assessments. Fuzzy Sets Syst. 88(1), 31–49 (1997)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    F. Herrera, E. Herrera-Viedma, J.L. Verdegay, Choice processes for non-homogeneous group decision making in linguistic setting. Fuzzy Sets Syst. 94(3), 287–308 (1998)MathSciNetCrossRefGoogle Scholar
  33. 33.
    E. Herrera-Viedma, S. Alonso, F. Chiclana, F. Herrera, A consensus model for group decision making with incomplete fuzzy preference relations. IEEE Trans. Fuzzy Syst. 15(5), 863–877 (2007)CrossRefMATHGoogle Scholar
  34. 34.
    E. Herrera-Viedma, F.J. Cabrerizo, J. Kacprzyk, W. Pedrycz, A review of soft consensus models in a fuzzy environment. Inf. Fusion 17, 4–13 (2014)CrossRefGoogle Scholar
  35. 35.
    E. Herrera-Viedma, F. Herrera, F. Chiclana, A consensus model for multiperson decision making with different preference structures. IEEE Trans. Syst. Man Cybern.-Part A: Syst. Hum. 32(3), 394–402 (2002)CrossRefMATHGoogle Scholar
  36. 36.
    E. Herrera-Viedma, F. Herrera, F. Chiclana, M. Luque, Some issues on consistency of fuzzy preference relations. Eur. J. Oper. Res. 154(1), 98–109 (2004)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    E. Herrera-Viedma, L. Martinez, F. Mata, F. Chiclana, A consensus support system model for group decision-making problems with multigranular linguistic preference relations. IEEE Trans. Fuzzy Syst. 13(5), 644–658 (2005)CrossRefGoogle Scholar
  38. 38.
    G. Hesamian, M. Shams, Measuring similarity and ordering based on hesitant fuzzy linguistic term sets. J. Intell. Fuzzy Syst. 28(2):983–990 (2015)Google Scholar
  39. 39.
    J. Kacprzyk, Group decision making with a fuzzy linguistic majority. Fuzzy Sets Syst. 18(2), 105–118 (1986)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    J. Kacprzyk, On some fuzzy cores and ‘soft’ consensus measures in group decision making, in The Analysis of Fuzzy Information, ed. by J.C. Bezdek (CRC Press, Boca Raton, 1987), pp. 119–130Google Scholar
  41. 41.
    J. Kacprzyk, M. Fedrizzi, ‘Soft’ consensus measures for monitoring real consensus reaching processes under fuzzy preferences. Control Cybern. 15(3–4), 309–323 (1986)MathSciNetMATHGoogle Scholar
  42. 42.
    J. Kacprzyk, M. Fedrizzi, A ‘soft’ measure of consensus in the setting of partial (fuzzy) preferences. Eur. J. Oper. Res. 34(3), 316–325 (1988)MathSciNetCrossRefGoogle Scholar
  43. 43.
    J. Kacprzyk, M. Fedrizzi, A ‘human-consistent’ degree of consensus based on fuzzy logic with linguistic quantifiers. Math. Soc. Sci. 18(3), 275–290 (1989)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    J. Kacprzyk, M. Fedrizzi, H. Nurmi, Group decision making and consensus under fuzzy preferences and fuzzy majority. Fuzzy Sets Syst. 49(1), 21–31 (1992)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    J. Kacprzyk, S. Zadrozny, Soft computing and web intelligence for supporting consensus reaching. Soft. Comput. 14(8), 833–846 (2010)CrossRefGoogle Scholar
  46. 46.
    J. Kacprzyk, S. Zadrozny, Z.W. Ras, How to support consensus reaching using action rules: a novel approach. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 18(4), 451–470 (2010)MathSciNetCrossRefGoogle Scholar
  47. 47.
    J. Lu, G. Zhang, D. Ruan, Intelligent multi-criteria fuzzy group decision making for situation assessments. Soft. Comput. 12(3), 289–299 (2008)CrossRefMATHGoogle Scholar
  48. 48.
    S. Massanet, J.V. Rieranad, J. Torrens, E. Herrera-Viedma, A new linguistic computational model based on discrete fuzzy numbers for computing with words. Inf. Sci. 258, 277–290 (2014)Google Scholar
  49. 49.
    F. Mata, L. Martinez, E. Herrera-Viedma, An adaptive consensus support model for group decision-making problems in a multigranular fuzzy linguistic context. IEEE Trans. Fuzzy Syst. 17(2), 279–290 (2009)CrossRefGoogle Scholar
  50. 50.
    J. Montero, Aggregation of fuzzy opinion in a non-homogeneous group. Fuzzy Sets Syst. 25(1), 15–20 (1987)Google Scholar
  51. 51.
    J. Montero, The impact of fuzziness in social choice paradoxes. Soft. Comput. 12, 177–182 (2008)CrossRefMATHGoogle Scholar
  52. 52.
    H. Nurmi, Fuzzy social choice: a selective retrospect. Soft. Comput. 12, 281–288 (2008)CrossRefMATHGoogle Scholar
  53. 53.
    I. Palomares, F.J. Estrella, L. Martinez, F. Herrera, Consensus under a fuzzy context: taxonomy, analysis framework afryca and experimental case of study. Inf. Fusion 20, 252–271 (2014)CrossRefGoogle Scholar
  54. 54.
    I. Palomares, L. Martinez, F. Herrera, Mentor: a graphical monitoring tool of preferences evolution in large-scale group decision making. Knowl.-Based Syst. 58, 66–74 (2014)CrossRefGoogle Scholar
  55. 55.
    Z. Pawlak, Information systems theoretical foundations. Inf. Syst. 6(3), 205–218 (1981)MathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    I.J. Pérez, F.J. Cabrerizo, S. Alonso, E. Herrera-Viedma, A new consensus model for group decision making problems with non homogeneous experts. IEEE Trans. Syst. Man Cybern.: Syst. 44(4), 494–498 (2014)CrossRefGoogle Scholar
  57. 57.
    I.J. Pérez, F.J. Cabrerizo, E. Herrera-Viedma, A mobile decision support system for dynamic group decision-making problems. IEEE Trans. Syst. Man Cybern.-Part A: Syst. Hum. 40(6), 1244–1256 (2010)CrossRefGoogle Scholar
  58. 58.
    I.J. Pérez, F.J. Cabrerizo, E. Herrera-Viedma, Group decision making problems in a linguistic and dynamic context. Expert Syst. Appl. 38(3), 1675–1688 (2011)CrossRefGoogle Scholar
  59. 59.
    I.J. Pérez, R. Wikstrom, J. Mezei, C. Carlsson, E. Herrera-Viedma, A new consensus model for group decision making using fuzzy ontology. Soft. Comput. 17(9), 1617–1627 (2013)CrossRefGoogle Scholar
  60. 60.
    R.M. Rodriguez, L. Martinez, V. Torra, Z.S. Xu, F. Herrera, Hesitant fuzzy sets: state of the art and future directions. Int. J. Intell. Syst. 29(6), 495–524 (2014)CrossRefGoogle Scholar
  61. 61.
    M. Roubens, Fuzzy sets and decision analysis. Fuzzy Sets Syst. 90(2), 199–206 (1997)MathSciNetCrossRefMATHGoogle Scholar
  62. 62.
    T.L. Saaty, The Analytic Hierarchy Process: Planning, Priority Setting (McGraw-Hill, Resource Allocation, New York, 1980)MATHGoogle Scholar
  63. 63.
    S. Saint, J.R. Lawson, Rules for Reaching Consensus: A Modern Approach to Decision Making (Jossey-Bass, 1994)Google Scholar
  64. 64.
    B. Spillman, R. Spillman, J.C. Bezdek, A fuzzy analysis of consensus in small groups, in Fuzzy Automata and Decision Processes, ed. by P.P. Wang, S.K. Chang (North-Holland, Amsterdam, 1980), pp. 331–356Google Scholar
  65. 65.
    T. Tanino, Fuzzy preference orderings in group decision making. Fuzzy Sets Syst. 12(2), 117–131 (1984)MathSciNetCrossRefMATHGoogle Scholar
  66. 66.
    M. Tavana, D.T. Kennedy, N-site: a distributed consensus building and negotiation support system. Int. J. Inf. Technol. Decis. Mak. 5(1), 123–154 (2006)CrossRefGoogle Scholar
  67. 67.
    V. Torra, Hesitant fuzzy sets. Int. J. Intell. Syst. 25(6), 529–539 (2010)MATHGoogle Scholar
  68. 68.
    P. Victor, C. Cornelis, M.D. Cock, P. Pinheiro da Silva, Gradual trust and distrust in recommender systems. Fuzzy Sets Syst. 160(10), 1367–1382 (2009)MathSciNetCrossRefMATHGoogle Scholar
  69. 69.
    P. Victor, C. Cornelis, M.D. Cock, E. Herrera-Viedma, Practical aggregation operators for gradual trust and distrust. Fuzzy Sets Syst. 184(1), 126–147 (2011)MathSciNetCrossRefMATHGoogle Scholar
  70. 70.
    S. Wasserman, K. Faust, Social Networks Analysis: Methods and Applications (Cambridge University Press, Cambridge, 2009)Google Scholar
  71. 71.
    J. Wu, F. Chiclana, A social network analysis trust-consensus based approach to group decision-making problems with interval-valued fuzzy reciprocal preference relations. Knowl.-Based Syst. 59, 97–107 (2014)CrossRefGoogle Scholar
  72. 72.
    J. Wu, F. Chiclana, Visual information feedback mechanism and attitudinal prioritisation method for group decision making with triangular fuzzy complementary preference relations. Inf. Sci. 279, 716–734 (2014)MathSciNetCrossRefGoogle Scholar
  73. 73.
    Z.B. Wu, J.P. Xu, A consistency and consensus based decision support model for group decision making with multiplicative preference relations. Decis. Support Syst. 52(3), 757–767 (2012)CrossRefGoogle Scholar
  74. 74.
    L.A. Zadeh, Fuzzy sets. Inf. Control 8(3), 338–353 (1965)MathSciNetCrossRefMATHGoogle Scholar
  75. 75.
    L.A. Zadeh, The concept of a linguistic variable and its applications to approximate reasoning. Inf. Sci. Part I, II, III, 8, 8, 9, 199–249,301–357,43–80 (1975)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ignacio Javier Perez
    • 1
  • Francisco Javier Cabrerizo
    • 2
  • Sergio Alonso
    • 3
  • Francisco Chiclana
    • 4
  • Enrique Herrera-Viedma
    • 5
  1. 1.Department of Computer Sciences and EngineeringUniversity of CadizPuerto RealSpain
  2. 2.Department of Software Engineering and Computer SystemsDistance Learning University of SpainMadridSpain
  3. 3.Department of Software EngineeringUniversity of GranadaGranadaSpain
  4. 4.Faculty of Technology, Centre for Computational IntelligenceDe Montfort UniversityLeicesterUK
  5. 5.Department of Computer Science and Artificial IntelligenceUniversity of GranadaGranadaSpain

Personalised recommendations