Turning Points of Nonlinear Circuits

Conference paper
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 23)

Abstract

Bifurcation theory plays a key role in the qualitative analysis of dynamical systems. In nonlinear circuit theory, bifurcations of equilibria describe qualitative changes in the local phase portrait near an operating point, and are important from both an analytical and a numerical point of view. This work is focused on quadratic turning points, which, in certain circumstances, yield saddle-node bifurcations. Algebraic conditions guaranteeing the existence of this kind of points are well-known in the context of explicit ordinary differential equations (ODEs). We transfer these conditions to semiexplicit differential-algebraic equations (DAEs), in order to impose them to branch-oriented models of nonlinear circuits. This way, we obtain a description of the conditions characterizing these turning points in terms of the underlying circuit digraph and the devices’ characteristics.

References

  1. 1.
    Allgower, E.L., Georg, K.: Introduction to Numerical Continuation Methods. SIAM, Philadelphia (2003)CrossRefMATHGoogle Scholar
  2. 2.
    Bollobás, B.: Modern Graph Theory. Springer, New York (1998)CrossRefMATHGoogle Scholar
  3. 3.
    Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical Solution of Initial-Value Problems in Differential Algebraic Equations. SIAM, Philadelphia (1996)MATHGoogle Scholar
  4. 4.
    Govaerts, W.J.F.: Numerical Methods for Bifurcations of Dynamical Equilibria. SIAM, Philadelphia (2000)CrossRefMATHGoogle Scholar
  5. 5.
    Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)CrossRefMATHGoogle Scholar
  6. 6.
    Horn, R.A., Johnson, C.R., Matrix Analysis. Cambridge University Press, New York (1985)CrossRefMATHGoogle Scholar
  7. 7.
    Perko, L.: Differential Equations and Dynamical Systems. Springer, New York (1991)CrossRefMATHGoogle Scholar
  8. 8.
    Riaza, R.: Differential-Algebraic Systems. World Scientific, Singapore (2008)CrossRefMATHGoogle Scholar
  9. 9.
    Riaza, R.: Manifolds of equilibria and bifurcations without parameters in memristive circuits. SIAM J. Appl. Math. 72 (2012) 877–896MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Sotomayor, J.: Generic bifurcations of dynamical systems. In: Peixoto, M.M. (ed.) Dynamical Systems, pp. 561–582. Academic, New York (1973)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Depto. de Matemática Aplicada a las Tecnologías de la Información y las ComunicacionesEscuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de MadridMadridSpain

Personalised recommendations