Advertisement

The Beaches of the State of São Paulo

  • Michel Michaelovitch de Mahiques
  • Eduardo Siegle
  • Javier Alcántara-Carrió
  • Filipe Galiforni Silva
  • Paulo Henrique Gomes de Oliveira Sousa
  • Cristina Celia Martins
Chapter
Part of the Coastal Research Library book series (COASTALRL, volume 17)

Abstract

The geological heritage of the coastal province of Sao Paulo state, characterized by the presence of the Serra do Mar mountain chain, combined with the hydrodynamics and resulting shoreline orientation and wave exposition defines six compartments with different kind of beaches. Thus, the relative position of the Serra do Mar mountain chain mainly controls the type of beach morphodynamics along the coast of the state of São Paulo. It is closer to the littoral in the North, leading to the dominance of reflective beaches, and further in the South, where dissipative beaches, associated with Late Quaternary coastal plains prevail. In the northern sector, wave energy is lower due to the presence of São Sebastião Island and a very irregular shoreline. In contrast, the southern sector is characterized by a large coastal plain and beaches exposed to most of the incident waves. Two compartments have been defined in the northern sector and three more in the southern one, with a transitional compartment among them. Moreover, the area as a whole is intensely occupied, either by an industrial zone (i.e. the Santos harbour area) or by tourism activities.

Keywords

Coastal Plain Wave Climate South Atlantic Convergence Zone Brazilian Coast Longshore Sediment Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Angulo RJ, Lessa G (1997) The Brazilian sea-level curves: a critical review with emphasis on the curves from Paranaguá and Cananéia regions. Mar Geol 140:141–166CrossRefGoogle Scholar
  2. Angulo RJ, Suguio K (1995) Re-evaluation of the maxima of the Holocene sea-level curve for the State of Paraná, Brazil. Palaeogeogr Palaeoclimatol Palaeoecol 112:385–393CrossRefGoogle Scholar
  3. Angulo RJ, Giannini PCF, Suguio K, Pessenda LCR (1999) The relative sea-level changes in the last 5500 years southern Brazil (Laguna-Imbituba region, Santa Catarina State) based on vermetid 14C ages. Mar Geol 159:327–339CrossRefGoogle Scholar
  4. Angulo RJ, Lessa GC, Souza MC (2006) A critical review of mid to late-Holocene sea-level fluctuations on the eastern Brazilian coastline. Quat Sci Rev 25:86–506CrossRefGoogle Scholar
  5. Barros MO (1996) Dinâmica e evolução dos ambientes praiais da Fazenda, do Puruba e de Itamambuca, litoral norte do Estado de São Paulo. Dissertation, University of São PauloGoogle Scholar
  6. Bastos CC, Ferreira NJ (2000) Análise Climatológica Da Alta Subtropical Do Atlântico Sul. In: Proceedings of the 11th Brazilian meteorological congress, Sociedade Brasileira de Meterologia, Rio de Janeiro, 2000Google Scholar
  7. Besnard W (1950a) Considerações gerais em torno da região lagunar de Cananéia-Iguape, I. Bol Inst Paulista Oceanogr 1:9–26CrossRefGoogle Scholar
  8. Besnard W (1950b) Considerações gerais em torno da região lagunar de Cananéia-Iguape, II. Bol Inst Paulista Oceanogr 2:3–28Google Scholar
  9. Branner JC (1904) The stone reefs of Brazil, their geological and geographical relations. Bull Mus Compar Zool 44:1–7Google Scholar
  10. Cardoso DG (2013) Variabilidade praial nas praias do Lázaro, Domingas Dias e Sununga, litoral norte de São Paulo à passagem dos sistemas frontais (Ubatuba, SP). Dissertation, University of São PauloGoogle Scholar
  11. Cazzoli y Goya S, Tessler MG (2000) Variações morfológicas espaço temporais entre as praias de Cibratel e Itanhaém-Suarão, Estado de São Paulo. Rev Bras Oceanogr 48:151–166Google Scholar
  12. Cruz FW, Vuille M, Burns SJ et al (2009) Orbitally driven east–west antiphasing of South American precipitation. Nat Geosci 2:210–214CrossRefGoogle Scholar
  13. Dottori M, Siegle E (2014) Hydrodynamic forcings at the entrance of an intertidal flat: Araçá Bay, Brazil. In: Abstracts of the 17th PECS – Physics of Estuaries and Coastal Seas, Porto de Galinhas, Brazil, 2014. http://www.pecs2014-brazil.org/Xabs/xabs_189_Dottori_Siegle.pdf
  14. Farinnacio A, Cazzoli y Goya S, Tessler MG (2009) Variações da linha de costa nas baías de Santos e São Vicente. Quat Environ Geosci 1:42–48Google Scholar
  15. Fonzar BC (1994) A circulação atmosférica na América do Sul: os grandes sistemas planetários e subsistemas regionais que atingem o continente (localização e trajetórias). Cad Geoc, Rio de Janeiro 11:11–33Google Scholar
  16. Giannini PCF (1989) Evolução quaternária na planície costeira de Peruíbe Itanhaém (SP) segundo resultados granulométricos: um confronto de métodos de tratamento estatístico. Bol Par Geoc 38:1–50Google Scholar
  17. Giannini PCF, Guedes CCF, Nascimento DR Jr et al (2009) Sedimentology and morphological evolution of the Ilha Comprida barrier system, Southern São Paulo Coast. In: Dillenburg S, Hesp P (eds) Geology and geomorphology of Holocene coastal barriers of Brazil, vol 107, Lecture notes in earth sciences. Springer, Berlin, pp 177–224CrossRefGoogle Scholar
  18. Guedes CCF, Giannini PCF, Sawakuchi AO et al (2011) Determination of controls on Holocene barrier progradation through application of OSL dating: the Ilha Comprida Barrier example, Southeastern Brazil. Mar Geol 285:11–16CrossRefGoogle Scholar
  19. Hartt CF (1870) Geology and physical geography of Brazil. Fields, Osgood, Boston, 625pGoogle Scholar
  20. Hinkel J, Lincke D, Vafeidis AT et al (2014) Coastal flood damage and adaptation costs under 21st century sea-level rise. PNAS. doi: 10.1073/pnas.1222469111 Google Scholar
  21. Holman RA (1994) The ARGUS Program. Bulletin of the Coastal Imaging Lab. Oregon State University, Corvallis, OR 97331Google Scholar
  22. Holthuijsen LH (2007) Waves in oceanic and coastal waters. Cambridge University Press, Cambridge, 404pCrossRefGoogle Scholar
  23. Hurtado SN, Cazzoli Y, Goya SV (2004) Evolution and dynamic of Itamambuca beach and comparative evaluation of morphodynamic studies of beaches. J Coast Res SI39:568–571Google Scholar
  24. Innocentini V, Caetano Neto ES (1996) A case study of the 9 August 1998 South Atlantic storm: numerical simulations of the wave activity. Weath Forecast 11:78–88CrossRefGoogle Scholar
  25. Italiani DM (2014) Resposta morfodinâmica à alimentação artificial da Ponta da Praia, Santos, SP. Dissertation, University of São PauloGoogle Scholar
  26. Jaeschke A, Rühlemann C, Arz H, Heil G, Lohmann G (2007) Coupling of millennial-scale changes in sea surface temperature and precipitation off northeastern Brazil with high-latitude climate shifts during the last glacial period. Paleoceanography. doi: 10.1029/2006PA001391 Google Scholar
  27. Jongman B, Ward PJ, Aerts JGJH (2012) Global exposure to river and coastal flooding: long term trends and changes. Glob Environ Chang 22:823–835CrossRefGoogle Scholar
  28. Karniol-Marquez M, Mahiques MM (2010) Variações morfológicas no prisma praial da Ilha Comprida (Sudeste do Brasil) – Subsídios para uma Gestão Costeira Sustentável. Gest Cost Integr 10:361–379Google Scholar
  29. Mahiques MM, Tessler MG, Furtado VV (1998) Characterization of energy gradient in enclosed bays of Ubatuba region, South-Eastern Brazil. Estuar Coast Shelf Sci 47:431–446CrossRefGoogle Scholar
  30. Martin L, Fournier M, Mourguiart P et al (1993) Southern Oscillation signal in South American palaeoclimatic data of the last 7000 years. Quat Res 39:338–346CrossRefGoogle Scholar
  31. Martin L, Dominguez JML, Bittencourt ACSP (2003) Fluctuating Holocene sea-levels in eastern and southeastern Brazil: evidence from multiple fossil and geometric indicators. J Coast Res 19:101–124Google Scholar
  32. Martins CC (2000) Variações morfológicas e sedimentares de curto período em perfis praiais, Praia da Bertioga/SP. Dissertation, University of São PauloGoogle Scholar
  33. Martins CC, Dias JMA, Mahiques MM (2010) Daily morphological changes determined by high-energy events on an embayed beach: a qualitative model. Earth Surf Process Landf 35:487–495Google Scholar
  34. Mascagni ML (2012) Dinâmica morfo-sedimentar da praia de Boiçucanga, SP, Brasil. Dissertation, University of São PauloGoogle Scholar
  35. Monteiro CAF (1969) A frente polar atlântica e as chuvas de inverno na fachada sul-oriental do Brasil: contribuição metodológica à análise rítmica de tempo no Brasil. PhD Thesis, University of São PauloGoogle Scholar
  36. Muehe D (2012) O litoral brasileiro e sua compartimentação. In: Cunha SB, Guerra AJT (eds) Geomorfologia do Brasil, 8th edn. Bertrand Brasil, Rio de Janeiro, pp 273–349Google Scholar
  37. Nascimento DR Jr (2006) Morfologia e Sedimentologia ao Longo do sistema Praia-Duna Frontal de Ilha Comprida, SP. Dissertation, University of São PauloGoogle Scholar
  38. Nascimento DR Jr, Giannini PCF, Tanaka APB, Guedes CCF (2008) Mudanças morfológicas da extremidade NE da Ilha Comprida (SP) nos últimos dois séculos. Rev Inst Geoc – USP 8:25–39Google Scholar
  39. Nobre P, Shukla J (1996) Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. J Clim 9:2464–2479CrossRefGoogle Scholar
  40. Nuber E (2008) Evolução morfológica e sedimentológica do arco praial de Massaguaçu, litoral norte do Estado de São Paulo. Dissertation, University of São PauloGoogle Scholar
  41. Paegle JN, Mo KC (2002) Linkages between summer rainfall variability over South America and sea surface temperature anomalies. J Clim 15:1389–1407CrossRefGoogle Scholar
  42. Pianca C (2014) Space-time variability of coastal morphology: results from video remote sensing. Dissertation, University of São PauloGoogle Scholar
  43. Pianca C, Mazzini PLF, Siegle E (2010) Brazilian offshore wave climate based on NWW3 reanalysis. Braz J Oceanogr 58:53–70CrossRefGoogle Scholar
  44. Ponçano WL, Tessler MG, Freitas CGL, Mahiques MM (1999) Tendências regionais de transporte de sedimentos arenosos ao longo das praias paulistas. Rev Univ Guarulhos, Geociências IV:102–115Google Scholar
  45. Ribeiro JS, Sousa PHGO, Vieira DR, Siegle E (2013) Evolução da vulnerabilidade à erosão costeira na Praia de Massaguaçú (SP), Brasil. Gest Cost Integr 13:253–265Google Scholar
  46. Rodrigues M, Mahiques MM, Tessler MG (2002) Sedimentação atual nas enseadas de Ubatumirim e Picinguaba, região norte de Ubatuba, Estado de São Paulo, Brasil. Rev Bras Oceanogr 50:27–45CrossRefGoogle Scholar
  47. Rogacheski CEA (2010) Dinâmica sedimentar e a caracterização de zonas de erosão acenuada (ZEA) ao longo do arco praial de Massaguaçu, SP. Dissertation, University of São PauloGoogle Scholar
  48. Sant’Anna Neto JL (1990) Ritmo Climático e a gênese das chuvas na zona costeira paulista. Dissertation, University of São PauloGoogle Scholar
  49. Santos HH, Siegle E, Sousa PHGO (2013) Beach cusps: spatial distribution and time evolution at Massaguaçú beach (SP), Brazil. In: AGU Spring Meeting. http://adsabs.harvard.edu/abs/2013AGUSMOS31B..07D
  50. Silva FG, Sousa PHGO, Siegle E (2014) Wave climate analysis and its relation with erosion processes along the beach system of Ilha Comprida (SP), Brazil. In: Proceedings of the 17th Physics of Estuaries and Coastal Seas (PECS) conference. Porto de Galinhas, Brazil. http://www.pecs2014-brazil.org/Xabs/xabs_167_Silva_etal.pdf
  51. Silveira LF, Klein AHF, Tessler MG (2010) Headland-bay beach planform stability of Santa Catarina state and of the northern coast of São Paulo state. Braz J Oceanogr 58(2):101–122CrossRefGoogle Scholar
  52. Silveira LF, Klein AHF, Tessler MG (2011) Classificação morfodinâmica das praias do Estado de Santa Catarina e do litoral norte do Estado de São Paulo utilizando sensoriamento remote. Braz J Aquat Sci Technol 15:13–28Google Scholar
  53. Sousa PHGO, Siegle E, Tessler MG (2011) Environmental and anthropogenic indicators for coastal risk assessment at Massaguaçú Beach (SP) Brazil. J Coast Res SI64:319–323CrossRefGoogle Scholar
  54. Sousa PHGO, Siegle E, Tessler MG (2013) Vulnerability assessment of Massaguaçú Beach (SE Brazil). Ocean Coast Manag 77:24–30CrossRefGoogle Scholar
  55. Souza CRG (1990) Considerações sobre os processos sedimentares quaternários e atuais na região de Caraguatatuba, litoral norte do Estado de São Paulo. Dissertation, University of São PauloGoogle Scholar
  56. Souza CRG (1997) As células de deriva litorânea e a erosão nas praias do estado de São Paulo. PhD Thesis, University of São PauloGoogle Scholar
  57. Souza CRG (2012) Praias arenosas oceânicas do estado de São Paulo (Brasil): síntese dos conhecimentos sobre morfodinâmica, sedimentologia, transporte costeiro e erosão costeira. Rev Dep Geogr – USP, Special Volume 30 years, 307–371Google Scholar
  58. Souza CRG, Suguio K (2003) The coastal erosion risk zoning and the State of São Paulo plan for coastal management. J Coast Res 35:530–547Google Scholar
  59. Suguio K (2003) Tópicos de geociências para o desenvolvimento sustentável: as regiões litorâneas. Rev Inst Geoc USP 1:1–40Google Scholar
  60. Suguio K, Martin L (1978) Quaternary marine formation of the states of São Paulo and Southern Rio de Janeiro. In: International symposium on coastal evolution in the quaternary. Brasilian National Working Group for the IGCP, São Paulo. Special Publication, 55pGoogle Scholar
  61. Suguio K, Martin L, Bittencourt ACSP et al (1985) Flutuações do nível relativo do mar durante o quaternário superior ao longo do litoral brasileiro e suas implicações na sedimentação costeira. Rev Bras Geoc 15:273–286Google Scholar
  62. Tessler MG (1988) Dinâmica sedimentar quaternária no litoral sul paulista. PhD Thesis, University of São PauloGoogle Scholar
  63. Tessler MG, Cazzoli y Goya (2005) Processos costeiros condicionantes do litoral brasileiro. Rev Dep Geogr – USP 17:11–23Google Scholar
  64. Tessler MG, Cazzoli y Goya SC, Yoshikawa PS, Hurtado SN (2006) São Paulo. In: Muehe D (ed) Erosão e Progradação do Litoral Brasileiro. MMA, Brasília, pp 297–346Google Scholar
  65. Torres JR, Abessa DMS, Santos FC, Maranhão LA, Davanso MB, Nascimento MRL, Mozeto A (2009) Effects of dredging operations on sediment quality: contaminant mobilization in dredged sediments from the Porto of Santos, SP, Brazil. J Soils Sedim 9:420–432CrossRefGoogle Scholar
  66. Vera CS, Vigliarolo PK, Berbery EH (2002) Cold season synoptic scale waves over subtropical South America. Mon Weather Rev 130:684–699CrossRefGoogle Scholar
  67. Xue Z, Feng A, Yin P, Xia D (2009) Coastal erosion induced by human activities: a Northwest Bohai sea case study. J Coast Res 25:723–733CrossRefGoogle Scholar
  68. Ybert JP, Bissa WM, Catharino ELM, Kutner M (2003) Environmental and sea-level variations on the southeastern Brazilian coast during the Late Holocene with comments on prehistoric human occupation. Palaeogeogr Palaeoclimatol Palaeoecol 189:11–24CrossRefGoogle Scholar
  69. Zembruscki SG (1979) Geomorfologia da margem continental sul brasileira e das bacias oceânicas adjacentes. In: Chaves HAF (ed) Geomorfologia da margem continental brasileira e das bacias oceânicas adjacentes, vol 7. Série Projeto REMAC, PETROBRAS-CENPES-DINTEP, Rio de Janeiro, pp 129–177Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Michel Michaelovitch de Mahiques
    • 1
  • Eduardo Siegle
    • 1
  • Javier Alcántara-Carrió
    • 1
  • Filipe Galiforni Silva
    • 1
  • Paulo Henrique Gomes de Oliveira Sousa
    • 1
  • Cristina Celia Martins
    • 2
  1. 1.Oceanographic Institute of the University of São Paulo (IOUSP)São PauloBrazil
  2. 2.Fundação de Estudos e Pesquisas Aquáticas, Fundação de Estudos e Pesquisas AquáticasSao PauloBrazil

Personalised recommendations