Localized Spot Patterns on the Sphere for Reaction-Diffusion Systems: Theory and Open Problems

  • Alastair Jamieson-Lane
  • Philippe H. Trinh
  • Michael J. WardEmail author
Conference paper


A new class of point-interaction problem characterizing the time evolution of spatially localized spots for reaction-diffusion (RD) systems on the surface of the sphere is introduced and studied. This problem consists of a differential algebraic system (DAE) of ODEs for the locations of a collection of spots on the sphere, and is derived from an asymptotic analysis in the large diffusivity ratio limit of certain singularly perturbed two-component RD systems. In Trinh and Ward (The dynamics of localized spot patterns for reaction-diffusion systems on the sphere. Nonlinearity Nonlinearity 29 (3), 766–806 (2016)), this DAE system was derived for the Brusselator and Schnakenberg RD systems, and herein we extend this previous analysis to the Gray-Scott RD model. Results and open problems pertaining to the determination of equilibria of this DAE system, and its relation to elliptic Fekete point sets , are highlighted. The potential of deriving similar DAE systems for more complicated modeling scenarios is discussed.


Point Vortex Slow Dynamic Large Basin Spot Pattern Localize Spot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



PHT thanks Lincoln College, Oxford and the Zilkha Trust for generous funding. MJW gratefully acknowledges grant support from NSERC.


  1. 1.
    Barreira, R., Elliott, C.A., Madzvamuse, A.: The surface finite element method for pattern formation on evolving biological surfaces. J. Math. Biol. 63, 1095–1109 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Boatto, S., Cabral, H.E.: Nonlinear stability of a latitudinal ring of point vortices on a non-rotating sphere. SIAM J. Appl. Math. 64 (1), 216–230 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bogomolov, V.A.: Dynamics of vorticity at a sphere. Fluid Dyn. (USSR) 6, 863–870 (1977)Google Scholar
  4. 4.
    Callahan, T.K.: Turing patterns with O(3) symmetry. Physica D 188 (1), 65–91 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chaplain, M.A.J, Ganesh, M., Graham, I.G.: Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumour growth. J. Math. Biol. 42 (5), 387–423 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chen, W., Ward, M.J.: The stability and dynamics of localized spot patterns in the two-dimensional Gray-Scott model. SIAM J. Appl. Dyn. Syst. 10 (2), 582–666 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chossat, P., Lauterbach, R., Melbourne, I.: Steady-sate bifurcation with O(3) symmetry. Arch. Rat. Mech. Anal. 113, 313–376 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Coombs, D., Straube, R., Ward, M.J.: Diffusion on a sphere with localized traps: mean first passage time, eigenvalue asymptotics, and Fekete points. SIAM J. Appl. Math. 70 (1), 302–332 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Dritschel, D.G., Boatto, S.: The motion of point vortices on closed surfaces. Proc. R. Soc. A 471, 20140890 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kidambi, R., Newton, P.K.: Motion of three vortices on the sphere. Physica D 116 (1–2), 143–175 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kolokolnikov, T., Ward, M.J., Wei, J.: Spot self-replication and dynamics for the Schnakenberg model in a two-dimensional domain. J. Nonlinear Sci. 19 (1), 1–56 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kondo, S., Asai, R.: A reaction–diffusion wave on the skin of the marine angelfish Pomacanthus. Nature 376, 765–768 (1995)CrossRefGoogle Scholar
  13. 13.
    Landsberg, C., Voigt, V.: A multigrid finite element method for reaction-diffusion systems on surfaces. Comput. Vis. Sci. 13, 177–185 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Macdonald, C.B., Merriman, B., Ruuth, S.J.: Simple computation of reaction-diffusion processes on point clouds. Proc. Natl. Acad. Sci. U.S.A. 110 (23), 9209–9214 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Madzvamuse, A., Chung, A.H.W., Venkataraman, V.: Stability analysis and simulations of coupled bulk-surface reaction diffusion systems. Proc. R. Soc. A 471, 20140546 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Matthews, P.C.: Pattern formation on a sphere. Phys. Rev. E 67 (3), 036206 (2003)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Nagata, W., Harrison, L.G., Wehner, S.: Reaction-diffusion models of growing plant tips: Bifurcations on hemispheres. Bull. Math. Biol. 6 (4), 571–607 (2003)CrossRefzbMATHGoogle Scholar
  18. 18.
    Newton, P.K.: The N-Vortex Problem: Analytical Techniques. Springer, New York (2001)CrossRefzbMATHGoogle Scholar
  19. 19.
    Newton, P.K., Sakajo, T.: Point vortex equilibria and optimal packings of circles on a sphere. Proc. R. Soc. A 467, 1468–1490 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Painter, K.J.: Modelling of pigment patterns in fish. In: Maini, P.K., Othmer, H.G. (eds.) Mathematical Models for Biological Pattern Formation. IMA Volumes in Mathematics and Its Applications, vol. 121, pp. 58–82. Springer-Verlag, New York (2000)Google Scholar
  21. 21.
    Plaza, R.G., Sánchez-Garduño, F., Padilla, P., Barrio, R.A., Maini, P.K.: The effect of growth and curvature on pattern formation. J. Dyn. Diff. Equ. 16 (4), 1093–1121 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Prigogine, I., Lefever, R.: Symmetry breaking instabilities in dissipative systems II. J. Chem. Phys. 48 (4), 1695–1700 (1968)CrossRefGoogle Scholar
  23. 23.
    Roberts, G.: Stability of relative equilibria in the planar n-vortex problem. SIAM J. Appl. Dyn. Syst. 12 (2), 1114–1134 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Rozada, I., Ruuth, S., Ward, M.J.: The stability of localized spot patterns for the Brusselator on the sphere. SIAM J. Appl. Dyn. Syst. 13 (1), 564–627 (2014),MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Sewalt, L., Doelman, A., Meijer, H., Rottschafer, V., Zagarias, A.: Tracking pattern evolution through extended center manifold reduction and singular perturbations. Physica D 298, 48–67 (2015)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Stortelder, W., de Swart, J., Pintér, J.: Finding elliptic Fekete point sets: two numerical solution approaches. J. Comput. Appl. Math. 130 (1–2), 205–216 (1998)zbMATHGoogle Scholar
  27. 27.
    Trinh, P., Ward, M.J.: The dynamics of localized spot patterns for reaction-diffusion systems on the sphere. Nonlinearity 29 (3), 766–806 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Varea, C., Aragón, J.L., Barrio, R.A.: Turing patterns on a sphere. Phys. Rev. E. 60 (4), 4588–4592 (1999)CrossRefGoogle Scholar
  29. 29.
    Wei, J., Winter, M.: Stationary multiple spots for reaction-diffusion systems. J. Math. Biol. 57 (1), 53–89 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Alastair Jamieson-Lane
    • 1
  • Philippe H. Trinh
    • 2
  • Michael J. Ward
    • 1
    Email author
  1. 1.Department of MathematicsUniversity of British ColumbiaVancouverCanada
  2. 2.OCIAM, Mathematical InstituteUniversity of OxfordOxfordUK

Personalised recommendations