The Gut Microbiota and Obesity in Humans

  • Konstantinos Efthymakis
  • Rocco Leonello
  • Fabio Pace
  • Matteo Neri
Chapter

Abstract

In recent years, the human gut microbiome has been linked to a wide range of host metabolic effects, via modulation of energy harvesting, lipid and glucose metabolism, inflammatory responses, and brain-gut axis activity. Numerous observational studies have yielded important results regarding the structure and adaptive responses of the gut microbiota in obesity. However, animal studies still represent the principal demonstration of direct causality regarding the obesogenic effects of microbiota modulation. In this chapter, we aimed at analyzing and summarizing available studies on the relationships between gut microbiota and obesity in humans. Several observational and interventional studies have established the possibility of assessing and targeting bacterial populations by various means, including diet, surgery, pre-/probiotics, antibiotics, and fecal transplant. However, protocols and results widely differ, thus rendering cautious any interpretation of causality. Advances in methodology and technique availability are promising in widening the possibilities for original research and possible development of individualized therapeutic tools.

References

  1. 1.
    Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 101(44):15718–15723CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A 104(3):979–984CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, Waget A, Delmée E, Cousin B, Sulpice T, Chamontin B, Ferrières J, Tanti JF, Gibson GR, Casteilla L, Delzenne NM, Alessi MC, Burcelin R (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56(7):1761–1772CrossRefPubMedGoogle Scholar
  4. 4.
    Amar J, Burcelin R, Ruidavets JB, Cani PD, Fauvel J, Alessi MC, Chamontin B, Ferriéres J (2008) Energy intake is associated with endotoxemia in apparently healthy men. Am J Clin Nutr 87(5):1219–1223PubMedGoogle Scholar
  5. 5.
    Wilson KH, Blitchington RB (1996) Human colonic biota studied by ribosomal DNA sequence analysis. Appl Environ Microbiol 62(7):2273–2278PubMedPubMedCentralGoogle Scholar
  6. 6.
    Suau A, Bonnet R, Sutren M, Godon JJ, Gibson GR, Collins MD, Doré J (1999) Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65(11):4799–4807PubMedPubMedCentralGoogle Scholar
  7. 7.
    Hold GL, Pryde SE, Russell VJ, Furrie E, Flint HJ (2002) Assessment of microbial diversity in human colonic samples by 16S rDNA sequence analysis. FEMS Microbiol Ecol 39(1):33–39CrossRefPubMedGoogle Scholar
  8. 8.
    Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308(5728):1635–1638CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Musilova S, Rada V, Vlkova E, Bunesova V, Nevoral J (2015) Colonisation of the gut by bifidobacteria is much more common in vaginal deliveries than caesarean sections. Acta Paediatr 104(4):e184–6Google Scholar
  10. 10.
    Mariat D, Firmesse O, Levenez F, Guimarăes V, Sokol H, Doré J, Corthier G, Furet JP (2009) The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol 9:123CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO (2007) Development of the human infant intestinal microbiota. PLoS Biol 5(7):e177CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444(7122):1022–1023CrossRefPubMedGoogle Scholar
  13. 13.
    Kalliomäki M, Collado MC, Salminen S, Isolauri E (2008) Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr 87(3):534–538PubMedGoogle Scholar
  14. 14.
    Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI (2009) A core gut microbiome in obese and lean twins. Nature 457(7228):480–484CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 107(33):14691–14696CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Santacruz A, Collado MC, García-Valdés L, Segura MT, Martín-Lagos JA, Anjos T, Martí-Romero M, Lopez RM, Florido J, Campoy C, Sanz Y (2010) Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr 104(1):83–92CrossRefPubMedGoogle Scholar
  17. 17.
    Collado MC, Isolauri E, Laitinen K, Salminen S (2008) Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am J Clin Nutr 88(4):894–899PubMedGoogle Scholar
  18. 18.
    Munukka E, Wiklund P, Pekkala S, Völgyi E, Xu L, Cheng S, Lyytikäinen A, Marjomäki V, Alen M, Vaahtovuo J, Keinänen-Kiukaanniemi S, Cheng S (2012) Women with and without metabolic disorder differ in their gut microbiota composition. Obesity (Silver Spring) 20(5):1082–1087CrossRefGoogle Scholar
  19. 19.
    Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B, Nielsen J, Bäckhed F (2013) Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498(7452):99–103CrossRefPubMedGoogle Scholar
  20. 20.
    Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto JM, Kennedy S, Leonard P, Li J, Burgdorf K, Grarup N, Jørgensen T, Brandslund I, Nielsen HB, Juncker AS, Bertalan M, Levenez F, Pons N, Rasmussen S, Sunagawa S, Tap J, Tims S, Zoetendal EG, Brunak S, Clément K, Doré J, Kleerebezem M, Kristiansen K, Renault P, Sicheritz-Ponten T, de Vos WM, Zucker JD, Raes J, Hansen T, MetaHIT consortium, Bork P, Wang J, Ehrlich SD, Pedersen O (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500(7464):541–546CrossRefPubMedGoogle Scholar
  21. 21.
    Duncan SH, Lobley GE, Holtrop G, Ince J, Johnstone AM, Louis P, Flint HJ (2008) Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes (Lond) 32(11):1720–1724CrossRefGoogle Scholar
  22. 22.
    Armougom F, Henry M, Vialettes B, Raccah D, Raoult D (2009) Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients. PLoS One 4(9):e7125CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Schwiertz A, Taras D, Schäfer K, Beijer S, Bos NA, Donus C, Hardt PD (2010) Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring) 18(1):190–195CrossRefGoogle Scholar
  24. 24.
    Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, Qin J, Sicheritz-Ponten T, Tims S, Torrents D, Ugarte E, Zoetendal EG, Wang J, Guarner F, Pedersen O, de Vos WM, Brunak S, Doré J, MetaHIT Consortium, Antolín M, Artiguenave F, Blottiere HM, Almeida M, Brechot C, Cara C, Chervaux C, Cultrone A, Delorme C, Denariaz G, Dervyn R, Foerstner KU, Friss C, van de Guchte M, Guedon E, Haimet F, Huber W, van Hylckama-Vlieg J, Jamet A, Juste C, Kaci G, Knol J, Lakhdari O, Layec S, Le Roux K, Maguin E, Mérieux A, Melo Minardi R, M'rini C, Muller J, Oozeer R, Parkhill J, Renault P, Rescigno M, Sanchez N, Sunagawa S, Torrejon A, Turner K, Vandemeulebrouck G, Varela E, Winogradsky Y, Zeller G, Weissenbach J, Ehrlich SD, Bork P (2011) Enterotypes of the human gut microbiome. Nature 473(7346):174–180CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486(7402):207–214CrossRefGoogle Scholar
  26. 26.
    Million M, Maraninchi M, Henry M, Armougom F, Richet H, Carrieri P, Valero R, Raccah D, Vialettes B, Raoult D (2012) Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. Int J Obes (Lond) 36(6):817–825CrossRefGoogle Scholar
  27. 27.
    Zuo HJ, Xie ZM, Zhang WW, Li YR, Wang W, Ding XB, Pei XF (2011) Gut bacteria alteration in obese people and its relationship with gene polymorphism. World J Gastroenterol 17(8):1076–1081CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Finucane MM, Sharpton TJ, Laurent TJ, Pollard KS (2014) A taxonomic signature of obesity in the microbiome? Getting to the guts of the matter. PLoS One 9(1):e84689CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Human Microbiome Project Consortium (2012) A framework for human microbiome research. Nature 486(7402):215–221CrossRefGoogle Scholar
  30. 30.
    Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Doré J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, MetaHIT Consortium, Bork P, Ehrlich SD, Wang J (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Suzuki TA, Worobey M (2014) Geographical variation of human gut microbial composition. Biol Lett 10(2):20131037CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Roberts DF (1953) Body weight, race and climate. Am J Phys Anthropol 11:533–558CrossRefPubMedGoogle Scholar
  33. 33.
    Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Bäckhed HK, Gonzalez A, Werner JJ, Angenent LT, Knight R, Bäckhed F, Isolauri E, Salminen S, Ley RE (2012) Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 150(3):470–480. doi:10.1016/j.cell.2012.07.008 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Jumpertz R, Le DS, Turnbaugh PJ, Trinidad C, Bogardus C, Gordon JI, Krakoff J (2011) Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr 94(1):58–65. doi:10.3945/ajcn.110.010132 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hoyles L, McCartney AL (2009) What do we mean when we refer to Bacteroidetes populations in the human gastrointestinal microbiota? FEMS Microbiol Lett 299(2):175–183CrossRefPubMedGoogle Scholar
  36. 36.
    Biedermann L, Zeitz J, Mwinyi J, Sutter-Minder E, Rehman A, Ott SJ, Steurer-Stey C, Frei A, Frei P, Scharl M, Loessner MJ, Vavricka SR, Fried M, Schreiber S, Schuppler M, Rogler G (2013) Smoking cessation induces profound changes in the composition of the intestinal microbiota in humans. PLoS One 8(3):e59260CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Dewulf EM, Cani PD, Claus SP, Fuentes S, Puylaert PG, Neyrinck AM, Bindels LB, de Vos WM, Gibson GR, Thissen JP, Delzenne NM (2013) Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 62(8):1112–1121CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Lattimer JM, Haub MD (2010) Effects of dietary fiber and its components on metabolic health. Nutrients 2(12):1266–1289Google Scholar
  39. 39.
    Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, Sinha R, Gilroy E, Gupta K, Baldassano R, Nessel L, Li H, Bushman FD, Lewis JD (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334(6052):105–108Google Scholar
  40. 40.
    Nadal I, Santacruz A, Marcos A, Warnberg J, Garagorri JM, Moreno LA, Martin-Matillas M, Campoy C, Martí A, Moleres A, Delgado M, Veiga OL, García-Fuentes M, Redondo CG, Sanz Y (2009) Shifts in clostridia, bacteroides and immunoglobulin-coating fecal bacteria associated with weight loss in obese adolescents. Int J Obes (Lond) 33(7):758–767CrossRefGoogle Scholar
  41. 41.
    Clarke SF, Murphy EF, O'Sullivan O, Lucey AJ, Humphreys M, Hogan A, Hayes P, O'Reilly M, Jeffery IB, Wood-Martin R, Kerins DM, Quigley E, Ross RP, O'Toole PW, Molloy MG, Falvey E, Shanahan F, Cotter PD (2014) Exercise and associated dietary extremes impact on gut microbial diversity. Gut 63(12):1913–1920CrossRefPubMedGoogle Scholar
  42. 42.
    Hao H, Cheng G, Iqbal Z, Ai X, Hussain HI, Huang L, Dai M, Wang Y, Liu Z, Yuan Z (2014) Benefits and risks of antimicrobial use in food-producing animals. Front Microbiol 5:288CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Brüssow H (2015) Growth promotion and gut microbiota: insights from antibiotic use. Environ Microbiol 17(7):2216–2227Google Scholar
  44. 44.
    De La Cochetière MF, Durand T, Lepage P, Bourreille A, Galmiche JP, Doré J (2005) Resilience of the dominant human fecal microbiota upon short-course antibiotic challenge. J Clin Microbiol 43(11):5588–5592CrossRefGoogle Scholar
  45. 45.
    Jakobsson HE, Jernberg C, Andersson AF, Sjölund-Karlsson M, Jansson JK, Engstrand L (2010) Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS One 5(3):e9836CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Dethlefsen L, Relman DA (2011) Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A 108(Suppl 1):4554–4561CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Pérez-Cobas AE, Gosalbes MJ, Friedrichs A, Knecht H, Artacho A, Eismann K, Otto W, Rojo D, Bargiela R, von Bergen M, Neulinger SC, Däumer C, Heinsen FA, Latorre A, Barbas C, Seifert J, dos Santos VM, Ott SJ, Ferrer M, Moya A (2013) Gut microbiota disturbance during antibiotic therapy: a multi-omic approach. Gut 62(11):1591–1601CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Thuny F, Richet H, Casalta JP, Angelakis E, Habib G, Raoult D (2010) Vancomycin treatment of infective endocarditis is linked with recently acquired obesity. PLoS One 5(2):e9074CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Million M, Angelakis E, Paul M, Armougom F, Leibovici L, Raoult D (2012) Comparative meta-analysis of the effect of Lactobacillus species on weight gain in humans and animals. Microb Pathog 53(2):100–108CrossRefPubMedGoogle Scholar
  50. 50.
    Vrieze A, Out C, Fuentes S, Jonker L, Reuling I, Kootte RS, van Nood E, Holleman F, Knaapen M, Romijn JA, Soeters MR, Blaak EE, Dallinga-Thie GM, Reijnders D, Ackermans MT, Serlie MJ, Knop FK, Holst JJ, van der Ley C, Kema IP, Zoetendal EG, de Vos WM, Hoekstra JB, Stroes ES, Groen AK, Nieuwdorp M (2014) Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. J Hepatol 60(4):824–831CrossRefPubMedGoogle Scholar
  51. 51.
    Ruijschop RMAJ, Boelrijk AEM, te Giffel MC (2008) Satiety effects of a dairy beverage fermented with propionic acid bacteria. Int Dairy J 18(9):945–950CrossRefGoogle Scholar
  52. 52.
    Kadooka Y, Sato M, Imaizumi K, Ogawa A, Ikuyama K, Akai Y, Okano M, Kagoshima M, Tsuchida T (2010) Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. Eur J Clin Nutr 64(6):636–643CrossRefPubMedGoogle Scholar
  53. 53.
    Woodard GA, Encarnacion B, Downey JR, Peraza J, Chong K, Hernandez-Boussard T, Morton JM (2009) Probiotics improve outcomes after Roux-en-Y gastric bypass surgery: a prospective randomized trial. J Gastrointest Surg 13(7):1198–1204CrossRefPubMedGoogle Scholar
  54. 54.
    Ferolla SM, Armiliato GN, Couto CA, Ferrari TC (2014) The role of intestinal bacteria overgrowth in obesity-related nonalcoholic fatty liver disease. Nutrients 6(12):5583–5599CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Brahe LK, Le Chatelier E, Prifti E, Pons N, Kennedy S, Blædel T, Håkansson J, Dalsgaard TK, Hansen T, Pedersen O, Astrup A, Ehrlich SD, Larsen LH (2015) Dietary modulation of the gut microbiota: a randomised controlled trial in obese postmenopausal women. Br J Nutr 114(3):406–417CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Furet JP, Kong LC, Tap J, Poitou C, Basdevant A, Bouillot JL, Mariat D, Corthier G, Doré J, Henegar C, Rizkalla S, Clément K (2010) Differential adaptation of human gut microbiota to bariatric surgery–induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes 59(12):3049–3057CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Kong LC, Tap J, Aron-Wisnewsky J, Pelloux V, Basdevant A, Bouillot JL, Zucker JD, Doré J, Clément K (2013) Gut microbiota after gastric bypass in human obesity: increased richness and associations of bacterial genera with adipose tissue genes. Am J Clin Nutr 98(1):16–24CrossRefPubMedGoogle Scholar
  58. 58.
    Graessler J, Qin Y, Zhong H, Zhang J, Licinio J, Wong ML, Xu A, Chavakis T, Bornstein AB, Ehrhart-Bornstein M, Lamounier-Zepter V, Lohmann T, Wolf T, Bornstein SR (2013) Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters. Pharmacogenomics J 13(6):514–522CrossRefPubMedGoogle Scholar
  59. 59.
    Kassam Z, Lee CH, Yuan Y, Hunt RH (2013) Fecal microbiota transplantation for Clostridium difficile infection: systematic review and meta-analysis. Am J Gastroenterol 108(4):500–508CrossRefPubMedGoogle Scholar
  60. 60.
    Sha S, Liang J, Chen M, Xu B, Liang C, Wei N, Wu K (2014) Systematic review: faecal microbiota transplantation therapy for digestive and nondigestive disorders in adults and children. Aliment Pharmacol Ther 39(10):1003–1032CrossRefPubMedGoogle Scholar
  61. 61.
    Vrieze A, Van Nood E, Holleman F, Salojärvi J, Kootte RS, Bartelsman JF, Dallinga-Thie GM, Ackermans MT, Serlie MJ, Oozeer R, Derrien M, Druesne A, Van Hylckama Vlieg JE, Bloks VW, Groen AK, Heilig HG, Zoetendal EG, Stroes ES, de Vos WM, Hoekstra JB, Nieuwdorp M (2012) Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143(4):913–916.e7CrossRefPubMedGoogle Scholar
  62. 62.
    Alang N, Kelly CR (2015) Weight gain after fecal microbiota transplantation. Open Forum Infect Dis 4;2(1):ofv004Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Konstantinos Efthymakis
    • 1
  • Rocco Leonello
    • 2
  • Fabio Pace
    • 2
  • Matteo Neri
    • 1
  1. 1.Department of Medicine and Aging Sciences and Ce.S.I.G. D’Annunzio UniversityChietiItaly
  2. 2.Complex Operating Unit of GastroenterologySeriate HospitalBergamoItaly

Personalised recommendations