Advertisement

Sentiment-Oriented Information Retrieval: Affective Analysis of Documents Based on the SenticNet Framework

  • Federica BisioEmail author
  • Claudia Meda
  • Paolo Gastaldo
  • Rodolfo Zunino
  • Erik Cambria
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 639)

Abstract

Sentiment analysis research has acquired a growing importance due to its applications in several different fields. A large number of companies have included the analysis of opinions and sentiments of costumers as a part of their mission. Therefore, the analysis and automatic classification of large corpora of documents in natural language, based on the conveyed feelings and emotions, has become a crucial issue for text mining purposes. This chapter aims to relate the sentiment-based characterization inferred from books with the distribution of emotions within the same texts. The main result consists in a method to compare and classify texts based on the feelings expressed within the narrative trend.

Keywords

Sentiment analysis Text mining Senticnet SLAIR 

References

  1. 1.
    Allen, J.: Natural Language Understanding. Benjamin/Cummings (1987)Google Scholar
  2. 2.
    Baker, C.F., Fillmore, C.J., Lowe, J.B.: The berkeley framenet project. In: Proceedings of the 17th international conference on Computational linguistics, vol, 1, pp. 86–90. Association for Computational Linguistics (1998)Google Scholar
  3. 3.
    Bisio, F., Gastaldo, P., Peretti, C., Zunino, R., Cambria, E.: Data intensive review mining for sentiment classification across heterogeneous domains. In: Advances in Social Networks Analysis and Mining (ASONAM), 2013 IEEE/ACM International Conference on. pp. 1061–1067. IEEE (2013)Google Scholar
  4. 4.
    Bisio, F., Gastaldo, P., Zunino, R., Cambria, E.: A learning scheme based on similarity functions for affective common-sense reasoning. In: IJCNN. pp. 2476–2481 (2015)Google Scholar
  5. 5.
    Bizer, C., Jens, L., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.: Dbpedia—a crystallization point for the web of data. Web Semant.: Sci. Serv. Agents World Wide Web 7(3), 154–165 (2009)CrossRefGoogle Scholar
  6. 6.
    Bosco, C., Patti, V., Bolioli, A.: Developing corpora for sentiment analysis and opinion mining: a survey and the Senti-TUT case study. IEEE Intell. Syst. 28(2), 55–63 (2013)CrossRefGoogle Scholar
  7. 7.
    Cambria, E., Fu, J., Bisio, F., Poria, S.: AffectiveSpace 2: enabling affective intuition for concept-level sentiment analysis. In: AAAI. pp. 508–514. Austin (2015)Google Scholar
  8. 8.
    Cambria, E., Gastaldo, P., Bisio, F., Zunino, R.: An ELM-based model for affective analogical reasoning. Neurocomputing 149, 443–455 (2015)CrossRefGoogle Scholar
  9. 9.
    Cambria, E.: Affective computing and sentiment analysis. IEEE Intelligent Systems 31(2), (2016)Google Scholar
  10. 10.
    Cambria, E., Hussain, A.: Sentic computing: a common-sense-based framework for concept-level sentiment analysis. Springer, Cham, Switzerland (2015)CrossRefGoogle Scholar
  11. 11.
    Cambria, E., Hussain, A., Havasi, C., Eckl, C.: SenticSpace: visualizing opinions and sentiments in a multi-dimensional vector space. In: Setchi, R., Jordanov, I., Howlett, R., Jain, L. (eds.) Knowledge-Based and Intelligent Information and Engineering Systems. Lecture Notes in Artificial Intelligence, vol. 6279, pp. 385–393. Springer, Berlin (2010)CrossRefGoogle Scholar
  12. 12.
    Cambria, E., Livingstone, A., Hussain, A.: The hourglass of emotions. In: Esposito, A., Vinciarelli, A., Hoffmann, R., Muller, V. (eds.) Cognitive Behavioral Systems. Lecture Notes in Computer Science, vol. 7403, pp. 144–157. Springer, Berlin Heidelberg (2012)Google Scholar
  13. 13.
    Cambria, E., Olsher, D., Kwok, K.: Sentic activation: a two-level affective common sense reasoning framework. In: AAAI. pp. 186–192. Toronto (2012)Google Scholar
  14. 14.
    Cambria, E., Olsher, D., Rajagopal, D.: SenticNet 3: a common and common-sense knowledge base for cognition-driven sentiment analysis. In: AAAI. pp. 1515–1521. Quebec City (2014)Google Scholar
  15. 15.
    Cambria, E., Poria, S., Bisio, F., Bajpai, R., Chaturvedi, I.: The clsa model: a novel framework for concept-level sentiment analysis. In: Computational Linguistics and Intelligent Text Processing, pp. 3–22. Springer (2015)Google Scholar
  16. 16.
    Cambria, E., Rajagopal, D., Kwok, K., Sepulveda, J.: GECKA: game engine for commonsense knowledge acquisition. In: FLAIRS, pp. 282–287 (2015)Google Scholar
  17. 17.
    Cambria, E., Schuller, B., Liu, B., Wang, H., Havasi, C.: Knowledge-based approaches to concept-level sentiment analysis. IEEE Intell. Syst. 28(2), 12–14 (2013)CrossRefGoogle Scholar
  18. 18.
    Cambria, E., Schuller, B., Liu, B., Wang, H., Havasi, C.: Statistical approaches to concept-level sentiment analysis. IEEE Intell. Syst. 28(3), 6–9 (2013)CrossRefGoogle Scholar
  19. 19.
    Cambria, E., Xia, Y., Hussain, A.: Affective common sense knowledge acquisition for sentiment analysis. In: LREC, pp. 3580–3585. Istanbul (2012)Google Scholar
  20. 20.
    Chikersal, P., Poria, S., Cambria, E.: Sentu: Sentiment analysis of tweets by combining a rule-based classifier with supervised learning. In: Proceedings of the International Workshop on Semantic Evaluation (SemEval 2015) (2015)Google Scholar
  21. 21.
    Chinthala, S., Mande, R., Manne, S., Vemuri, S.: Sentiment analysis on twitter streaming data. In: Emerging ICT for Bridging the Future-Proceedings of the 49th Annual Convention of the Computer Society of India (CSI), vol. 1, pp. 161–168. Springer (2015)Google Scholar
  22. 22.
    van Cranenburgh, A., Huygens, I., Koolen, C.: Identifying literary texts with bigrams. In: Computational Linguistics for Literature, p. 58 (2015)Google Scholar
  23. 23.
    Davidov, D., Tsur, O., Rappoport, A.: Enhanced sentiment learning using twitter hashtags and smileys. In: Proceedings of the 23rd International Conference on Computational Linguistics: Posters, pp. 241–249. Association for Computational Linguistics (2010)Google Scholar
  24. 24.
    Di Fabbrizio, G., Aker, A., Gaizauskas, R.: Summarizing on-line product and service reviews using aspect rating distributions and language modeling. IEEE Intell. Syst. 28(3), 28–37 (2013)CrossRefGoogle Scholar
  25. 25.
    Dyer, M.G.: Connectionist natural language processing: a status report. In: Computational Architectures Integrating Neural and Symbolic Processes, pp. 389–429. Springer (1995)Google Scholar
  26. 26.
    Elliott, C.D.: The affective reasoner: a process model of emotions in a multi-agent system. Northwestern University (1992)Google Scholar
  27. 27.
    García-Moya, L., Anaya-Sanchez, H., Berlanga-Llavori, R.: A language model approach for retrieving product features and opinions from customer reviews. IEEE Intell. Syst. 28(3), 19–27 (2013)CrossRefGoogle Scholar
  28. 28.
    Hatzivassiloglou, V., McKeown, K.R.: Predicting the semantic orientation of adjectives. In: Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and Eighth Conference of the European Chapter of the Association for Computational Linguistics, pp. 174–181. Association for Computational Linguistics (1997)Google Scholar
  29. 29.
    Honkela, T., Korhonen, J., Lagus, K., Saarinen, E.: Five-dimensional sentiment analysis of corpora, documents and words. In: Advances in Self-Organizing Maps and Learning Vector Quantization, pp. 209–218. Springer (2014)Google Scholar
  30. 30.
    Hung, C., Lin, H.K.: Using objective words in SentiWordNet to improve sentiment classification for word of mouth. IEEE Intell. Syst. 28(2), 47–54 (2013)CrossRefGoogle Scholar
  31. 31.
    Kamps, J., Marx, M., Mokken, R.J., De Rijke, M.: Using wordnet to measure semantic orientations of adjectives. In: LREC. vol. 4, pp. 1115–1118. Citeseer (2004)Google Scholar
  32. 32.
    Kim, S.M., Hovy, E.: Automatic detection of opinion bearing words and sentences. In: Companion Volume to the Proceedings of the International Joint Conference on Natural Language Processing (IJCNLP), pp. 61–66 (2005)Google Scholar
  33. 33.
    Kim, S.M., Hovy, E.: Extracting opinions, opinion holders, and topics expressed in online news media text. In: Proceedings of the Workshop on Sentiment and Subjectivity in Text, pp. 1–8. Association for Computational Linguistics (2006)Google Scholar
  34. 34.
    Kouloumpis, E., Wilson, T., Moore, J.: Twitter sentiment analysis: the good the bad and the omg!. Icwsm 11, 538–541 (2011)Google Scholar
  35. 35.
    Meda, C., Bisio, F., Gastaldo, P., Zunino, R., Surlinelli, R., Scillia, E., Ottaviano, A.V.: Content-adaptive analysis and filtering of microblogs traffic for event-monitoring applications. In: Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems, vol. 1, pp. 155–170. Springer (2015)Google Scholar
  36. 36.
    Melville, P., Gryc, W., Lawrence, R.D.: Sentiment analysis of blogs by combining lexical knowledge with text classification. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1275–1284. ACM (2009)Google Scholar
  37. 37.
    Mohammad, S.M., Kiritchenko, S., Zhu, X.: Nrc-canada: building the state-of-the-art in sentiment analysis of tweets. In: Second Joint Conference on Lexical and Computational Semantics (*SEM), vol. 2, pp. 321–327 (2013)Google Scholar
  38. 38.
    Murtagh, F., Ganz, A.: Pattern recognition in narrative: analysis of narratives of emotion (2014). arXiv preprint arXiv:1405.3539
  39. 39.
    Ortigosa, A., Martín, J.M., Carro, R.M.: Sentiment analysis in facebook and its application to e-learning. Comput. Hum. Behav. 31, 527–541 (2014)CrossRefGoogle Scholar
  40. 40.
    Ortony, A., Clore, G., Collins, A.: Cogn. Struct. Emotions. Cambridge University Press, Cambridge (1988)Google Scholar
  41. 41.
    Pang, B., Lee, L.: A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts. In: Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, p. 271. Association for Computational Linguistics (2004)Google Scholar
  42. 42.
    Pang, B., Lee, L.: Seeing stars: exploiting class relationships for sentiment categorization with respect to rating scales. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, pp. 115–124. Association for Computational Linguistics (2005)Google Scholar
  43. 43.
    Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retrieval 2(1–2), 1–135 (2008)CrossRefGoogle Scholar
  44. 44.
    Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using machine learning techniques. In: EMNLP, pp. 79–86. Philadelphia (2002)Google Scholar
  45. 45.
    Plutchik, R.: The nature of emotions. Am. Sci. 89(4), 344–350 (2001)CrossRefGoogle Scholar
  46. 46.
    Popescu, A.M., Etzioni, O.: Extracting product features and opinions from reviews. In: Natural Language Processing and Text Mining, pp. 9–28. Springer (2007)Google Scholar
  47. 47.
    Poria, S., Gelbukh, A., Hussain, A., Howard, N., Das, D., Bandyopadhyay, S.: Enhanced SenticNet with affective labels for concept-based opinion mining. Intell. Sys. IEEE 28(2), 31–38 (2013)CrossRefGoogle Scholar
  48. 48.
    Rao, D., Ravichandran, D.: Semi-supervised polarity lexicon induction. In: EACL, pp. 675–682. Athens (2009)Google Scholar
  49. 49.
    Riloff, E., Wiebe, J.: Learning extraction patterns for subjective expressions. In: Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing, pp. 105–112. Association for Computational Linguistics (2003)Google Scholar
  50. 50.
    Rosenthal, S., Nakov, P., Kiritchenko, S., Mohammad, S.M., Ritter, A., Stoyanov, V.: Semeval-2015 task 10: Sentiment analysis in twitter. In: Proceedings of the 9th International Workshop on Semantic Evaluation, SemEval (2015)Google Scholar
  51. 51.
    Sangiacomo, F., Leoncini, A., Decherchi, S., Gastaldo, P., Zunino, R.: Sealab advanced information retrieval. In: IEEE Fourth International Conference on Semantic Computing (ICSC), pp. 444–445. IEEE (2010)Google Scholar
  52. 52.
    dos Santos, C.N., Gatti, M.: Deep convolutional neural networks for sentiment analysis of short texts. In: Proceedings of the 25th International Conference on Computational Linguistics (COLING), Dublin, Ireland (2014)Google Scholar
  53. 53.
    Snyder, B., Barzilay, R.: Multiple aspect ranking using the good grief algorithm. In: HLT-NAACL, pp. 300–307 (2007)Google Scholar
  54. 54.
    Socher, R., Perelygin, A., Wu, J.Y., Chuang, J., Manning, C.D., Ng, A.Y., Potts, C.: Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), vol. 1631, p. 1642. Citeseer (2013)Google Scholar
  55. 55.
    Somasundaran, S., Wiebe, J., Ruppenhofer, J.: Discourse level opinion interpretation. In: COLING, pp. 801–808. Manchester (2008)Google Scholar
  56. 56.
    Speer, R., Havasi, C.: ConceptNet 5: a large semantic network for relational knowledge. In: Hovy, E., Johnson, M., Hirst, G. (eds.) Theory and Applications of Natural Language Processing, chap. 6. Springer (2012)Google Scholar
  57. 57.
    Stevenson, R., Mikels, J., James, T.: Characterization of the affective norms for english words by discrete emotional categories. Behav. Res. Methods 39, 1020–1024 (2007)CrossRefGoogle Scholar
  58. 58.
    Strapparava, C., Valitutti, A.: WordNet-Affect: An affective extension of WordNet. In: LREC, pp. 1083–1086. Lisbon (2004)Google Scholar
  59. 59.
    Tang, D., Wei, F., Qin, B., Liu, T., Zhou, M.: Coooolll: a deep learning system for twitter sentiment classification. In: Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pp. 208–212 (2014)Google Scholar
  60. 60.
    Tang, D., Wei, F., Yang, N., Zhou, M., Liu, T., Qin, B.: Learning sentiment-specific word embedding for twitter sentiment classification. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, vol. 1, pp. 1555–1565 (2014)Google Scholar
  61. 61.
    Tsai, A., Tsai, R., Hsu, J.: Building a concept-level sentiment dictionary based on commonsense knowledge. IEEE Intell. Syst. 28(2), 22–30 (2013)CrossRefGoogle Scholar
  62. 62.
    Turney, P.D.: Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews. In: Proceedings of the 40th Annual Meeting on Association for Computational linguistics, pp. 417–424. Association for Computational Linguistics (2002)Google Scholar
  63. 63.
    Vahdat, M., Oneto, L., Anguita, D., Funk, M., Rauterberg, M.: Can machine learning explain human learning? Neurocomputing (In Press)Google Scholar
  64. 64.
    Wang, Q., Cambria, E., Liu, C., Hussain, A.: Common sense knowledge for handwritten chinese recognition. Cogn. Comput. 5(2), 234–242 (2013)CrossRefGoogle Scholar
  65. 65.
    Weichselbraun, A., Gindl, S., Scharl, A.: Extracting and grounding context-aware sentiment lexicons. IEEE Intell. Syst. 28(2), 39–46 (2013)CrossRefGoogle Scholar
  66. 66.
    Wiebe, J., Wilson, T., Cardie, C.: Annotating expressions of opinions and emotions in language. Lang. Resour. Eval. 39(2), 165–210 (2005)CrossRefGoogle Scholar
  67. 67.
    Wu, W., Li, H., Wang, H., Zhu, K.: Probase: a probabilistic taxonomy for text understanding. In: SIGMOD, pp. 481–492. Scottsdale (2012)Google Scholar
  68. 68.
    Yu, H., Hatzivassiloglou, V.: Towards answering opinion questions: separating facts from opinions and identifying the polarity of opinion sentences. In: Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing, pp. 129–136. Association for Computational Linguistics (2003)Google Scholar
  69. 69.
    Zirn, C., Niepert, M., Stuckenschmidt, H., Strube, M.: Fine-grained sentiment analysis with structural features. In: IJCNLP, pp. 336–344 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Federica Bisio
    • 1
    Email author
  • Claudia Meda
    • 1
  • Paolo Gastaldo
    • 1
  • Rodolfo Zunino
    • 1
  • Erik Cambria
    • 2
  1. 1.DITEN – University of GenoaGenoaItaly
  2. 2.SCE – School of Computer Engineering, Nanyang Technological UniversitySingaporeSingapore

Personalised recommendations