Advertisement

Secure Distributed Computation on Private Inputs

  • Geoffroy Couteau
  • Thomas Peters
  • David Pointcheval
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9482)

Abstract

The recent notion of encryption switching protocol (ESP) allows two players to obliviously switch between two encryption schemes. Instantiated from multiplicatively homomorphic encryption and additively homomorphic encryption, ESPs provide a generic solution to two-party computation and lead to particularly efficient protocols for arithmetic circuits in terms of interaction and communication.

In this paper, we further investigate their applications and show how ESPs can be used as an alternative to fully-homomorphic encryption (FHE) to outsource computation on sensitive data to cloud providers. Our interactive solution relies on two non-colluding servers which obliviously perform the operations on encrypted data, and eventually send back the outcome in an encrypted form to the appropriate players.

Our solution makes use of a nice combination of the Paillier encryption scheme and the Damgard-Jurik variant with multiple trapdoors, which notably allows cross-user evaluations on encrypted data.

Keywords

Encryption switching protocols Delegation of computations 

Notes

Acknowledgments

This work was supported in part by the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007–2013 Grant Agreement no. 339563 – CryptoCloud).

References

  1. 1.
    Bresson, E., Catalano, D., Pointcheval, D.: A simple public-key cryptosystem with a double trapdoor decryption mechanism and its applications. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 37–54. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Damgård, I., Jurik, M.: A length-flexible threshold cryptosystem with applications. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 350–364. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theor. 31, 469–472 (1985)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press, May/June 2009Google Scholar
  6. 6.
    Couteau, G., Thomas Peters, D.P.: Encryption switching protocols. Cryptology ePrint Archive, Report 2015/990 (2015). http://eprint.iacr.org/
  7. 7.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM STOC, pp. 218–229. ACM Press, May 1987Google Scholar
  8. 8.
    Goldreich, O., Micali, S., Wigderson, A.: How to prove all NP-statements in zero-knowledge and a methodology of cryptographic protocol design. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 171–185. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  9. 9.
    Hazay, C., Mikkelsen, G.L., Rabin, T., Toft, T.: Efficient RSA key generation and threshold paillier in the two-party setting. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 313–331. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In: Karloff, H.J., Pitassi, T. (eds.) 44th ACM STOC, pp. 1219–1234. ACM Press, May 2012Google Scholar
  11. 11.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Schnorr, C.-P.: Efficient identification and signatures for smart cards. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 688–689. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  13. 13.
    Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th FOCS, pp. 162–167. IEEE Computer Society Press, October 1986Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Geoffroy Couteau
    • 1
  • Thomas Peters
    • 1
  • David Pointcheval
    • 1
  1. 1.ENS, CNRS & INRIA, PSL Research UniversityParisFrance

Personalised recommendations