Advertisement

Optimization Problems in Infrastructure Security

  • Evangelos Kranakis
  • Danny Krizanc
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9482)

Abstract

How do we identify and prioritize risks and make smart choices based on fiscal constraints and limited resources? The main goal of infrastructure security is to secure, withstand, and rapidly recover from potential threats that may affect critical resources located within a given bounded region. In order to strengthen and maintain secure, functioning, and resilient critical infrastructure, proactive and coordinated efforts are necessary.

Motivated from questions raised by infrastructure security, in this paper we survey several recent optimization problems whose solution has occupied (and continues to occupy) computer science researchers in the last few years. Topics discussed include:
  1. 1.

    Patrolling.

     
  2. 2.

    Sensor Coverage and Interference.

     
  3. 3.

    Evacuation.

     
  4. 4.

    Domain Protection and Blocking.

     

The central theme in all the problems mentioned above will involve mobility in that the participating agents will be able to move over a specified region with a given speed.

Security in itself is undoubtedly a very broad and complex task which involves all layers of the communication process from physical to network. As such the limited goal of this survey is to outline existing models and ideas and discuss related open problems and future research directions, pertaining to optimization problems in infrastructure security.

Keywords

Blocking Coverage Evacuation Infrastructure security Interference Mobile robots Patrolling 

References

  1. 1.
    Ahlswede, R., Wegener, I.: Search Problems. Wiley-Interscience, New York (1987)zbMATHGoogle Scholar
  2. 2.
    Almeida, A., Ramalho, G.L., Santana, H., Azevedo Tedesco, P., Menezes, T., Corruble, V., Chevaleyre, Y.: Recent advances on multi-agent patrolling. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 474–483. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous, vol. 55. Kluwer Academic Publishers, New York (2003)zbMATHGoogle Scholar
  4. 4.
    Baeza Yates, R., Culberson, J., Rawlins, G.: Searching in the plane. Inf. Comput. 106(2), 234–252 (1993)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Beck, A.: On the linear search problem. Isr. J. Math. 2(4), 221–228 (1964)CrossRefzbMATHGoogle Scholar
  6. 6.
    Bellman, R.: An optimal search. SIAM Rev. 5(3), 274 (1963)CrossRefGoogle Scholar
  7. 7.
    Benkoski, S., Monticino, M., Weisinger, J.: A survey of the search theory literature. Naval Res. Logistics (NRL) 38(4), 469–494 (1991)CrossRefzbMATHGoogle Scholar
  8. 8.
    Bhattacharya, B., Burmester, M., Hu, Y., Kranakis, E., Shi, Q., Wiese, A.: Optimal movement of mobile sensors for barrier coverage of a planar region. TCS 410(52), 5515–5528 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Biringer, B., Vugrin, E., Warren, D.: Critical Infrastructure System Security and Resiliency. CRC Press, Boca Raton (2013)CrossRefGoogle Scholar
  10. 10.
    Bonato, A., Nowakowski, R.: The Game of Cops and Robbers on Graphs. American Mathematical Society, Providence (2011)CrossRefzbMATHGoogle Scholar
  11. 11.
    Chen, D.Z., Gu, Y., Li, J., Wang, H.: Algorithms on minimizing the maximum sensor movement for barrier coverage of a linear domain. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 177–188. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Chrobak, M., Gąsieniec, L., Gorry, T., Martin, R.: Group search on the line. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R. (eds.) SOFSEM 2015. LNCS, vol. 8939, pp. 164–176. Springer, Heidelberg (2015)Google Scholar
  13. 13.
    Collins, A., Czyzowicz, J., Gasieniec, L., Kosowski, A., Kranakis, E., Krizanc, D., Martin, R., Morales Ponce, O.: Optimal patrolling of fragmented boundaries. In: Proceedings of SPAA (2013)Google Scholar
  14. 14.
    Czyzowicz, J., Gąsieniec, L., Gorry, T., Kranakis, E., Martin, R., Pajak, D.: Evacuating robots via unknown exit in a disk. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 122–136. Springer, Heidelberg (2014)Google Scholar
  15. 15.
    Czyzowicz, J., Gąsieniec, L., Kosowski, A., Kranakis, E.: Boundary patrolling by mobile agents with distinct maximal speeds. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 701–712. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Czyzowicz, J., Gasieniec, L., Kosowski, A., Kranakis, E., Krizanc, D., Taleb, N.: When patrolmen become corrupted: monitoring a graph using faulty mobile robots. In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS, vol. 9472, pp. 343–354. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48971-0_30 CrossRefGoogle Scholar
  17. 17.
    Czyzowicz, J., Kranakis, E., Krizanc, D., Lambadaris, I., Narayanan, L., Opatrny, J., Stacho, L., Urrutia, J., Yazdani, M.: On minimizing the maximum sensor movement for barrier coverage of a line segment. In: Ruiz, P.M., Garcia-Luna-Aceves, J.J. (eds.) ADHOC-NOW 2009. LNCS, vol. 5793, pp. 194–212. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Czyzowicz, J., Kranakis, E., Krizanc, D., Lambadaris, I., Narayanan, L., Opatrny, J., Stacho, L., Urrutia, J., Yazdani, M.: On minimizing the sum of sensor movements for barrier coverage of a line segment. In: Nikolaidis, I., Wu, K. (eds.) ADHOC-NOW 2010. LNCS, vol. 6288, pp. 29–42. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J.: Robot-assisted restoration of barrier coverage. In: Workshop on Approximation and Online Algorithms, pp. 119–131. Springer (2014)Google Scholar
  20. 20.
    Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., Shende, S.: Wireless autonomous robot evacuation from equilateral triangles and squares. In: Papavassiliou, S., Ruehrup, S. (eds.) ADHOC-NOW 2015. LNCS, vol. 9143, pp. 181–194. Springer, Switzerland (2015)CrossRefGoogle Scholar
  21. 21.
    Dobbie, J.: A survey of search theory. Oper. Res. 16(3), 525–537 (1968)CrossRefzbMATHGoogle Scholar
  22. 22.
    Dobrev, S.: Personal communicationGoogle Scholar
  23. 23.
    Dumitrescu, A., Ghosh, A., Tóth, C.D.: On fence patrolling by mobile agents. Electr. J. Comb. 21(3), 1–15 (2014). P3.4Google Scholar
  24. 24.
    Emek, Y., Langner, T., Uitto, J., Wattenhofer, R.: Solving the ANTS problem with asynchronous finite state machines. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 471–482. Springer, Heidelberg (2014)Google Scholar
  25. 25.
    Kapelko, R., Kranakis, E.: On the displacement for covering a square with randomly placed sensors. In: Papavassiliou, S., Ruehrup, S. (eds.) ADHOC-NOW 2015. LNCS, vol. 9143, pp. 148–162. Springer, Switzerland (2015)Google Scholar
  26. 26.
    Kawamura, A., Kobayashi, Y.: Fence patrolling by mobile agents with distinct speeds. In: Chao, K.-M., Hsu, T., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 598–608. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  27. 27.
    Kranakis, E., Krizanc, D., Luccio, F., Smith, B.: Maintaining intruder detection capability in a rectangular domain with sensors. In: Algosensors 2015, Patras, Greece (2015)Google Scholar
  28. 28.
    Kranakis, E., Krizanc, D., Morales-Ponce, O., Narayanan, L., Opatrny, J., Shende, S.: Expected sum and maximum of displacement of random sensors for coverage of a domain. In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Parallelism in Algorithms and Architectures, pp. 73–82. ACM (2013)Google Scholar
  29. 29.
    Kranakis, E., Shaikhet, G.: Displacing random sensors to avoid interference. In: Cai, Z., Zelikovsky, A., Bourgeois, A. (eds.) COCOON 2014. LNCS, vol. 8591, pp. 501–512. Springer, Heidelberg (2014)Google Scholar
  30. 30.
    Kranakis, E., Shaikhet, G.: Sensor allocation problems on the real line. J. Appl. Probab. (2015, to appear)Google Scholar
  31. 31.
    Kumar, S., Lai, T.H., Arora, A.: Barrier coverage with wireless sensors. In: Proceedings of the 11th Annual International Conference on Mobile Computing and Networking, pp. 284–298. ACM (2005)Google Scholar
  32. 32.
    Lenzen, C., Lynch, N., Newport, C., Radeva, T.: Trade-offs between selection complexity and performance when searching the plane without communication. In: Proceedings of PODC, pp. 252–261 (2014)Google Scholar
  33. 33.
    Lewis, T.G.: Critical Infrastructure Protection in Homeland Security: Defending a Networked Nation. John Wiley & Sons, Hoboken (2014)Google Scholar
  34. 34.
    López-Ortiz, A., Sweet, G.: Parallel searching on a lattice. In: Proceedings of CCCG, pp. 125–128 (2001)Google Scholar
  35. 35.
    Machado, A., Ramalho, G.L., Zucker, J.-D., Drogoul, A.: Multi-agent patrolling: an empirical analysis of alternative architectures. In: Sichman, J.S., Bousquet, F., Davidsson, P. (eds.) MABS 2002. LNCS (LNAI), vol. 2581, pp. 155–170. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  36. 36.
    Nahin, P.: Chases and Escapes: The Mathematics of Pursuit and Evasion. Princeton University Press, Princeton (2012)Google Scholar
  37. 37.
    O’Rourke, J.: Art Gallery Theorems and Algorithms, vol. 57. Oxford University Press, Oxford (1987)zbMATHGoogle Scholar
  38. 38.
    Park, T., Shi, H.: Extending the lifetime of barrier coverage by adding sensors to a bottleneck region. In: 12th IEEE Consumer Communications and Networking Conference (CCNC). IEEE (2015)Google Scholar
  39. 39.
    Pasqualetti, F., Zanella, F., Peters, J.R., Spindler, M., Carli, R., Bullo, F.: Camera network coordination for intruder detection. IEEE Trans. Contr. Sys. Techn. 22(5), 1669–1683 (2014)CrossRefGoogle Scholar
  40. 40.
    Radvanovsky, R.S., McDougall, A.: Critical Infrastructure: Homeland Security and Emergency Preparedness. CRC Press, Boca Raton (2009)CrossRefGoogle Scholar
  41. 41.
    Saipulla, A., Westphal, C., Liu, B., Wang, J.: Barrier coverage of line-based deployed wireless sensor networks. In: INFOCOM, pp. 127–135. IEEE (2009)Google Scholar
  42. 42.
    Stone, L.: Theory of Optimal Search. Academic Press, New York (1975)zbMATHGoogle Scholar
  43. 43.
    Xie, H., Li, M., Wang, W., Wang, C., Li, X., Zhang, Y.: Minimal patching barrier healing strategy for barrier coverage in hybrid wsns. In: 2014 IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC), pp. 1558–1563. IEEE (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of Computer ScienceCarleton UniversityOttawaCanada
  2. 2.Department of Mathematics and Computer ScienceWesleyan UniversityMiddletownUSA

Personalised recommendations