Robust Segmentation of Aerial Image Data Recorded for Landscape Ecology Studies

  • Rafael Guillermo Gonzalez Acuña
  • Junli Tao
  • Daniel Breen
  • Barbara Breen
  • Steve Pointing
  • Len Gillman
  • Reinhard Klette
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9555)

Abstract

Remote sensing from unmanned aerial vehicles provides an opportunity to bridge the gap between fine scale ground-based measurements and broad scale observations from conventional aircraft and satellites. The advantages of this approach include safe access to hazardous or difficult terrain and conditions, the ability to survey at specific times and spatial scales, and the increasingly affordable cost of this technology. These benefits have led to a rapidly expanding range of applications in natural resource management and research including mapping of terrain, vegetation cover and condition, threatened species, habitat and the impacts of agriculture, forestry, urbanisation and climate change. The analysis of these often large datasets requires reliable segmentation and classification algorithms to efficiently process information for use in landscape ecology and adaptive management. In this paper, four segmentation methods are compared using images of native vegetation, introduced weeds and agriculture recorded from a quadcopter flown over a warm temperate island (Waiheke Island, New Zealand), and also images recorded from a fixed wing UAV in a polar desert (McMudro Dry Valleys, Antarctica). We propose a post-processing method to improve the segmentation performance of the algorithms and demonstrate how this can contribute to improving research outcomes in natural resource management, conservation and agriculture.

Keywords

Image segmentation Aerial video data UAV Waiheke Island Antarctica Performance evaluation Segmentation measure 

Notes

Acknowledgments

Authors thank Dongwei Liu for experimental support.

References

  1. 1.
    Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34, 2274–2282 (2012)CrossRefGoogle Scholar
  2. 2.
    Bellvert, J., Zarco-Tejada, P.J., Girona, J., Fereres, E.: Mapping crop water stress index in a pinot-noir vineyard: comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle. Precis. Agric. 15, 361–376 (2014)CrossRefGoogle Scholar
  3. 3.
    Bollard-Breen, B., Brooks, J.D., Jones, M.R.L., Robertson, J., Betschart, S., Kung, O., Cary, S.C., Lee, C.K., Pointing, S.B.: Application of an unmanned aerial vehicle in spatial mapping of terrestrial biology and human disturbance in the McMurdo Dry Valleys, East Antarctica. Polar Biol. 38, 573–578 (2015)CrossRefGoogle Scholar
  4. 4.
    Boor, C.: A Practical Guide to Splines. Springer, New York (1978)CrossRefMATHGoogle Scholar
  5. 5.
    Comaniciu, Q., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24, 603–619 (2002)CrossRefGoogle Scholar
  6. 6.
    d’Oleire-Oltmanns, S., Marzolff, I., Peter, K.D., Ries, J.B.: Unmanned aerial vehicle (UAV) for monitoring soil erosion in Morocco. Remote Sens. 4, 3390–3416 (2012)CrossRefGoogle Scholar
  7. 7.
    Dunford, R., Michel, K., Gagnage, M., Piégay, H., Trémelo, M.L.: Potential and constraints of unmanned aerial vehicle technology for the characterization of Mediterranean riparian forest. Int. J. Remote Sens. 30, 4915–4935 (2009)CrossRefGoogle Scholar
  8. 8.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice Hall, New York (2008)Google Scholar
  9. 9.
    Ishihama, F., Watabe, Y., Oguma, H.: Validation of a high resolution, remotely operated aerial remote sensing system for the identification of herbaceous plant species. Appl. Veg. Sci. 15, 383–389 (2012)CrossRefGoogle Scholar
  10. 10.
    Klette, R.: Concise Computer Vision. Springer, London (2014)CrossRefMATHGoogle Scholar
  11. 11.
    Klette, R., Rosenfeld, A.: Digital Geometry. Morgan Kaufmann, San Francisco (2004)MATHGoogle Scholar
  12. 12.
    Kvasov, B.: Methods of Shape-Preserving Spline Approximation. World Scientific Pub, London (2000)CrossRefMATHGoogle Scholar
  13. 13.
    Lalit, G., Thotsapon, S.: Gaussian-mixture-based image segmentation algorithm. Pattern Recogn. 31(3), 315–325 (1998)CrossRefGoogle Scholar
  14. 14.
    MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Proceedings of Berkeley Symposium Mathematical Statistics Probability, pp. 281–297 (1967)Google Scholar
  15. 15.
    Mitchell, J.J., Glenn, N.F., Anderson, M.O., Hruska, R.C., Halford, A., Baun, C., Nydegger, N.: Unmanned aerial vehicle hyperspectral remote sensing for dryland vegetation monitoring, signal processing. In: Proceedings of Workshop Hyperspectral Image, pp. 1–10 (2012)Google Scholar
  16. 16.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979)CrossRefGoogle Scholar
  17. 17.
    Peña, J.M., Torres-Sánchez, J., de Castro, A.I., Kelly, M., López-Granados, F.: Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images. PLoS ONE 8, e77151 (2013)CrossRefGoogle Scholar
  18. 18.
    Primicerio, J., Di Gennaro, S.F., Fiorillo, E., Genesio, L., Lugato, E., Matese, A., Vaccari, F.P.: A flexible unmanned aerial vehicle for precision agriculture. Precis. Agric. 13, 517–523 (2012)CrossRefGoogle Scholar
  19. 19.
    Vehmas, M., Eerikäinen, K., Peuhkurinen, J., Packalén, P., Maltamo, M.: Airborne laser scanning for the site type identification of mature boreal forest stands. Remote Sens. 3, 100–116 (2011)CrossRefGoogle Scholar
  20. 20.
    Wang, Q.: HMRF-EM-image: Implementation of the hidden Markov random model and its expectation-maximization algorithm (2012). arxiv: 1207.3510 [cs.CV]
  21. 21.
    Zarco-Tejada, P.J., Diaz-Varela, R., Angileri, V., Loudjani, P.: Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. Eur. J. Agron. 55, 89–99 (2014)CrossRefGoogle Scholar
  22. 22.
    Zhang, Z.: Native vegetation classification using remote sensing techniques: A case study of dairy flat regrowth bush by using the AUT Unmanned Aerial Vehicle. Doctoral dissertation. University of Technology, Auckland (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Rafael Guillermo Gonzalez Acuña
    • 1
  • Junli Tao
    • 2
  • Daniel Breen
    • 2
  • Barbara Breen
    • 2
  • Steve Pointing
    • 2
  • Len Gillman
    • 2
  • Reinhard Klette
    • 2
  1. 1.Centro de Investigaciones en ÓpticaLeónMexico
  2. 2.Auckland University of TechnologyAucklandNew Zealand

Personalised recommendations