Event Analogy Based Privacy Preservation in Visual Surveillance

  • Wei Qi YanEmail author
  • Feng Liu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9555)


Privacy preservation as a thorny problem in surveillance has been arisen because of its relevance to human right, however it has not been completely solved yet today. In this paper, we investigate this existing problem and expect to get ride of those intuitive methods such as pixelization, blurring or mosaicking on human face regions through object tracking. We detail privacy preservation at event level and thereafter choose suitable events represented by motion pictures in virtual reality to replace those events of surveillance in real reality. The advantage of taking use of this approach is to leverage the utility and privacy of surveillance events. The outcome will not affect visual effects and surveillance security much however it is able to achieve the objectives of privacy preservation.


Event analogy Surveillance event Privacy preservation Real reality Virtual reality 


  1. 1.
    Reinhard, E., Ashikhmin, M., Gooch, B., Shirley, P.: Color transfer between images. IEEE Comput. Graph. Appl. 21(5), 34–41 (2001)CrossRefGoogle Scholar
  2. 2.
    Klette, R.: Concise Computer Vision. Springer, London (2014)CrossRefzbMATHGoogle Scholar
  3. 3.
    Welsh, T., Ashikhmin, M., Mueller, K.: Transferring color to greyscale images. In: Computer graphics and interactive techniques, pp. 277–280, USA (2002)Google Scholar
  4. 4.
    Yan, W., Kankanhalli, M.: Colorizing infrared home videos. In: IEEE ICME 2003, pp. 97–100, USA (2003)Google Scholar
  5. 5.
    Hertzmann, A., Jacobs, C., Oliver, N., Curless, B., Salesin, D.: Image analogies. In: Computer graphics and interactive techniques, pp. 327–340, USA (2001)Google Scholar
  6. 6.
    Evans, T.: A program for the solution of geometric analogy intelligence test questions. In: Semantic Information Processing. MIT Press, New York (1968)Google Scholar
  7. 7.
    Hertzmann, A., Oliver, N., Curless, B., Seitz, S.: Curve analogies. In: Eurographics workshop on Rendering, Italy (2002)Google Scholar
  8. 8.
    Winston, P.: Learning and reasoning by analogy. Commun. ACM 23(12), 689–703 (1980)CrossRefGoogle Scholar
  9. 9.
    Gentner, D.: Structure mapping: a theoretical framework for analogy. Cogn. Sci. 7(2), 155–170 (1983)CrossRefGoogle Scholar
  10. 10.
    Dorai, C., Venkatesh, S.: Bridging the semantic gap with computational media aesthetics. IEEE MultiMed. 10(2), 15–17 (2003)CrossRefGoogle Scholar
  11. 11.
    William, T., Touis, R., Egon, C.: Example-based super-resolution. IEEE Comput. Graph. Appl. 22, 56–65 (2002)Google Scholar
  12. 12.
    Adams, B., Dorai, C., Venkatesh, S.: Automated film rhythm extraction for scene analysis. In: Proceedings of the IEEE ICME 2001, pp. 1192–1195, Japan (2001)Google Scholar
  13. 13.
    Adams, B., Venkatesh, S., Dorai, C.: Finding the beat: an analysis of the rhythmic elements of motion pictures. Int. J. Image Graph. 2(2), 215–245 (2002)CrossRefGoogle Scholar
  14. 14.
    Herbert, Z.: Sight, Sound, Motion: Applied Media Aesthetics. Wadsworth Publishing Company, Belmont (1999)Google Scholar
  15. 15.
    Saini, M., Atrey, P., Mehrotra, S.: Adaptive transformation for robust privacy protection in video surveillance. Int. J. Adv. Multimed. 2012, 4 (2012)Google Scholar
  16. 16.
    Saini, M., Atrey, P., Mehrotra, S., Kankanhalli, M.: Privacy aware publication of surveillance video. Int. J. Trust Manage. Comput. Commun. 1(1), 23–51 (2012)CrossRefGoogle Scholar
  17. 17.
    Saini, M., Atrey, P., Mehrotra, S., Emmanuel, S., Kankanhalli, M.: Privacy modeling for video data publication. In: IEEE ICME 2010, Singapore (2010)Google Scholar
  18. 18.
    Zhang, P., Thomas, T., Emmanuel, S., Kankanhalli, M.: Privacy preserving video surveillance using pedestrian tracking mechanism. In: ACM Workshop on Multimedia in Forensics, Security and Intelligence (2010)Google Scholar
  19. 19.
    Yan, W., Kieran, D., Rafatirad, S., Jain, R.: A comprehensive study of visual event computing. Multimed. Tools Appl. 55(3), 443–481 (2011)CrossRefGoogle Scholar
  20. 20.
    Yan, W., Kankanhalli, M.: Analogies based video editing. Multimed. Syst. 11(1), 3–18 (2005)CrossRefGoogle Scholar
  21. 21.
    Yan, W., Kankanhalli, M.: Multimedia simplification for optimized MMS synthesis. ACM Trans. Multimed. Comput. Commun. Appl. 3(1) (2007)Google Scholar
  22. 22.
    Rogez, G., Rihan, J., Orrite, C., Torr, P.: Fast human pose detection using randomized hierarchical cascades of rejectors. Int. J. Comput. Vis. 99(1), 25–52 (2012)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Prest, A., Ferrari, V., Schmid, C.: Explicit modeling of human-object interactions in realistic videos. IEEE Trans. Pattern Anal. Mach. Intell. 35(4), 835–848 (2013)CrossRefGoogle Scholar
  24. 24.
    Zelnik-Manor, L., Irani, M.: Event-Based Video Analysis. In: IEEE CVPR (2001)Google Scholar
  25. 25.
    Zelnik-Manor, L., Irani, M.: Statistical analysis of dynamic actions. IEEE PAMI 28(9), 1530–1535 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Auckland University of TechnologyAucklandNew Zealand
  2. 2.Chinese Academy of SciencesBeijingChina

Personalised recommendations