Big Data Optimization: Recent Developments and Challenges pp 147-176

Part of the Studies in Big Data book series (SBD, volume 18) | Cite as

Topology, Big Data and Optimization

Chapter

Abstract

The idea of using geometry in learning and inference has a long history going back to canonical ideas such as Fisher information, Discriminant analysis, and Principal component analysis. The related area of Topological Data Analysis (TDA) has been developing in the last decade. The idea is to extract robust topological features from data and use these summaries for modeling the data. A topological summary generates a coordinate-free, deformation invariant and highly compressed description of the geometry of an arbitrary data set. Topological techniques are well-suited to extend our understanding of Big Data. These tools do not supplant existing techniques, but rather provide a complementary viewpoint to existing techniques. The qualitative nature of topological features do not give particular importance to individual samples, and the coordinate-free nature of topology generates algorithms and viewpoints well suited to highly complex datasets. With the introduction of persistence and other geometric-topological ideas we can find and quantify local-to-global properties as well as quantifying qualitative changes in data.

Keywords

Applied topology Persistent homology Mapper Euler characteristic curve Topological Data Analysis 

References

  1. 1.
    Aanjaneya, M., Chazal, F., Chen, D., Glisse, M., Guibas, L., Morozov, D.: Metric graph reconstruction from noisy data. Int. J. Comput. Geom. Appl. 22(04), 305–325 (2012)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Adams, H., Carlsson, G.: Evasion paths in mobile sensor networks. Int. J. Robot. Res. 34(1), 90–104 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Adcock, A., Carlsson, E., Carlsson, G.: The ring of algebraic functions on persistence bar codes. http://comptop.stanford.edu/u/preprints/multitwo (2012)
  4. 4.
    Adcock, A., Rubin, D., Carlsson, G.: Classification of hepatic lesions using the matching metric. Comput. Vis. Image Underst. 121, 36–42 (2014)CrossRefGoogle Scholar
  5. 5.
    Adler, R.J.: The Geometry of Random Fields, vol. 62. Siam (1981)Google Scholar
  6. 6.
    Adler, R.J.: Some new random field tools for spatial analysis. Stochast. Environ. Res. Risk Assess. 22(6), 809–822 (2008)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Amari, S.I., Nagaoka, H.: Methods of Information Geometry, vol. 191. American Mathematical Society (2007)Google Scholar
  8. 8.
    Arai, Z., Kalies, W., Kokubu, H., Mischaikow, K., Oka, H., Pilarczyk, P.: A database schema for the analysis of global dynamics of multiparameter systems. SIAM J. Appl. Dyn. Syst. 8(3), 757–789 (2009)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Babson, E., Benjamini, I.: Cut sets and normed cohomology with applications to percolation. Proc. Am. Math. Soc. 127(2), 589–597 (1999)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Bajardi, P., Delfino, M., Panisson, A., Petri, G., Tizzoni, M.: Unveiling patterns of international communities in a global city using mobile phone data. EPJ Data Sci. 4(1), 1–17 (2015)CrossRefGoogle Scholar
  11. 11.
    Bauer, U., Kerber, M., Reininghaus, J.: Distributed computation of persistent homology. In: ALENEX, pp. 31–38. SIAM (2014)Google Scholar
  12. 12.
    Bauer, U., Kerber, M., Reininghaus, J., Wagner, H.: PHAT-persistent homology algorithms toolbox. In: Mathematical Software-ICMS 2014, pp. 137–143. Springer (2014)Google Scholar
  13. 13.
    Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)CrossRefMATHGoogle Scholar
  14. 14.
    Bendich, P., Wang, B., Mukherjee, S.: Local homology transfer and stratification learning. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1355–1370. SIAM (2012)Google Scholar
  15. 15.
    Berwald, J., Gidea, M., Vejdemo-Johansson, M.: Automatic recognition and tagging of topologically different regimes in dynamical systems. Discontinuity Non-linearity Complex. 3(4), 413–426 (2015)CrossRefMATHGoogle Scholar
  16. 16.
    Blumberg, A.J., Gal, I., Mandell, M.A., Pancia, M.: Robust statistics, hypothesis testing, and confidence intervals for persistent homology on metric measure spaces. Found. Comput. Math. 14(4), 745–789 (2014)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Bremer, P.T., Edelsbrunner, H., Hamann, B., Pascucci, V.: A multi-resolution data structure for two-dimensional morse-smale functions. In: Proceedings of the 14th IEEE Visualization 2003 (VIS’03), p. 19. IEEE Computer Society (2003)Google Scholar
  18. 18.
    Bubenik, P.: Statistical Topology Using Persistence Landscapes (2012)Google Scholar
  19. 19.
    Bubenik, P.: Statistical topological data analysis using persistence landscapes. J. Mach. Learn. Res. 16, 77–102 (2015)MathSciNetMATHGoogle Scholar
  20. 20.
    Bubenik, P., Scott, J.A.: Categorification of persistent homology. arXiv:1205.3669 (2012)
  21. 21.
    Busaryev, O., Cabello, S., Chen, C., Dey, T.K., Wang, Y.: Annotating simplices with a homology basis and its applications. In: Algorithm Theory-SWAT 2012, pp. 189–200. Springer (2012)Google Scholar
  22. 22.
    Bush, J., Gameiro, M., Harker, S., Kokubu, H., Mischaikow, K., Obayashi, I., Pilarczyk, P.: Combinatorial-topological framework for the analysis of global dynamics. Chaos: Interdiscip. J. Nonlinear Sci. 22(4), 047,508 (2012)Google Scholar
  23. 23.
    Cabello, S., Giannopoulos, P.: The complexity of separating points in the plane. In: Proceedings of the Twenty-Ninth Annual Symposium on Computational Geometry, pp. 379–386. ACM (2013)Google Scholar
  24. 24.
    Carlsson, G.: Topology and data. Am. Math. Soc. 46(2), 255–308 (2009)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Carr, H., Snoeyink, J., Axen, U.: Computing contour trees in all dimensions. Comput. Geom. 24(2), 75–94 (2003)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Chambers, E.W., Erickson, J., Nayyeri, A.: Homology flows, cohomology cuts. SIAM J. Comput. 41(6), 1605–1634 (2012)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Chazal, F., Cohen-Steiner, D., Glisse, M., Guibas, L.J., Oudot, S.Y.: Proximity of persistence modules and their diagrams. In: Proceedings of the 25th Annual Symposium on Computational Geometry, SCG’09, pp. 237–246. ACM, New York, NY, USA (2009). doi:10.1145/1542362.1542407
  28. 28.
    Chazal, F., Cohen-Steiner, D., Guibas, L.J., Oudot, S.Y.: The Stability of Persistence Diagrams Revisited (2008)Google Scholar
  29. 29.
    Chazal, F., Fasy, B.T., Lecci, F., Rinaldo, A., Wasserman, L.: Stochastic convergence of persistence landscapes and silhouettes. In: Proceedings of the Thirtieth Annual Symposium on Computational Geometry, p. 474. ACM (2014)Google Scholar
  30. 30.
    Chazal, F., Guibas, L.J., Oudot, S.Y., Skraba, P.: Persistence-based clustering in riemannian manifolds. J. ACM (JACM) 60(6), 41 (2013)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Chazal, F., de Silva, V., Glisse, M., Oudot, S.: The structure and stability of persistence modules. arXiv:1207.3674 (2012)
  32. 32.
    Chazal, F., de Silva, V., Oudot, S.: Persistence stability for geometric complexes. arXiv:1207.3885 (2012)
  33. 33.
    Chazal, F., Skraba, P., Patel, A.: Computing well diagrams for vector fields on \(\mathbb{R}^{n}\). Appl. Math. Lett. 25(11), 1725–1728 (2012)Google Scholar
  34. 34.
    Chen, C., Freedman, D.: Quantifying homology classes. arXiv:0802.2865 (2008)
  35. 35.
    Chen, C., Freedman, D.: Hardness results for homology localization. Discrete Comput. Geom. 45(3), 425–448 (2011)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell. 17(8), 790–799 (1995)CrossRefGoogle Scholar
  37. 37.
    Choudhury, A.I., Wang, B., Rosen, P., Pascucci, V.: Topological analysis and visualization of cyclical behavior in memory reference traces. In: Pacific Visualization Symposium (PacificVis), 2012 IEEE, pp. 9–16. IEEE (2012)Google Scholar
  38. 38.
    Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom. 37(1), 103–120 (2007)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Extending persistence using Poinca and Lefschetz duality. Found. Comput. Math. 9(1), 79–103 (2009). doi:10.1007/s10208-008-9027-z
  40. 40.
    Cohen-Steiner, D., Edelsbrunner, H., Harer, J., Mileyko, Y.: Lipschitz functions have \({\rm L}_{\rm p}\)-stable persistence. Found. Comput. Math. 10(2), 127–139 (2010)Google Scholar
  41. 41.
    Cohen-Steiner, D., Edelsbrunner, H., Morozov, D.: Vines and vineyards by updating persistence in linear time. In: Proceedings of the Twenty-Second Annual Symposium on Computational Geometry, SCG’06, pp. 119–126. ACM, New York, NY, USA (2006). doi:10.1145/1137856.1137877
  42. 42.
    de Silva, V., Ghrist, R., Muhammad, A.: Blind swarms for coverage in 2-D. In: Robotics: Science and Systems, pp. 335–342 (2005)Google Scholar
  43. 43.
    Dey, T.K., Hirani, A.N., Krishnamoorthy, B.: Optimal homologous cycles, total unimodularity, and linear programming. SIAM J. Comput. 40(4), 1026–1044 (2011)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Dey, T.K., Wenger, R.: Stability of critical points with interval persistence. Discrete Comput. Geom. 38(3), 479–512 (2007)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Donoho, D.L., Grimes, C.: Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proc. Natl. Acad. Sci. 100(10), 5591–5596 (2003)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Dłotko, P., Ghrist, R., Juda, M., Mrozek, M.: Distributed computation of coverage in sensor networks by homological methods. Appl. Algebra Eng. Commun. Comput. 23(1), 29–58 (2012). doi:10.1007/s00200-012-0167-7
  47. 47.
    Edelsbrunner, H., Harer, J.: Persistent homology—a survey. In: Goodman, J.E., Pach, J., Pollack, R. (eds.) Surveys on Discrete and Computational Geometry: Twenty Years Later, Contemporary Mathematics, vol. 453, pp. 257–282. American Mathematical Society (2008)Google Scholar
  48. 48.
    Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. AMS Press (2009)Google Scholar
  49. 49.
    Edelsbrunner, H., Harer, J., Natarajan, V., Pascucci, V.: Morse-smale complexes for piecewise linear 3-manifolds. In: Proceedings of the Nineteenth Annual Symposium on Computational Geometry, pp. 361–370. ACM (2003)Google Scholar
  50. 50.
    Edelsbrunner, H., Harer, J., Zomorodian, A.: Hierarchical morse complexes for piecewise linear 2-manifolds. In: Proceedings of the Seventeenth Annual Symposium on Computational Geometry, pp. 70–79. ACM (2001)Google Scholar
  51. 51.
    Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. In: 41st Annual Symposium on Foundations of Computer Science, 2000. Proceedings, pp. 454–463 (2000)Google Scholar
  52. 52.
    Edelsbrunner, H., Morozov, D., Patel, A.: Quantifying transversality by measuring the robustness of intersections. Found. Comput. Math. 11(3), 345–361 (2011)MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry, vol. 150. Springer (1995)Google Scholar
  54. 54.
    Erickson, J., Whittlesey, K.: Greedy optimal homotopy and homology generators. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1038–1046. Society for Industrial and Applied Mathematics (2005)Google Scholar
  55. 55.
    Fasy, B.T., Kim, J., Lecci, F., Maria, C.: Introduction to the R package TDA. arXiv:1411.1830 (2014)
  56. 56.
    Gabriel, P.: Unzerlegbare Darstellungen I. Manuscripta Mathematica 6(1), 71–103 (1972). doi:10.1007/BF01298413
  57. 57.
    Ghrist, R.: Barcodes: the persistent topology of data. Bull. Am. Math. Soc. 45(1), 61–75 (2008)MathSciNetCrossRefMATHGoogle Scholar
  58. 58.
    Ghrist, R., Krishnan, S.: A topological max-flow-min-cut theorem. In: Proceedings of Global Signal Inference (2013)Google Scholar
  59. 59.
    Ghrist, R., Muhammad, A.: Coverage and hole-detection in sensor networks via homology. In: Proceedings of the 4th International Symposium on Information Processing in Sensor Networks, p. 34. IEEE Press (2005)Google Scholar
  60. 60.
    Gyulassy, A., Natarajan, V., Pascucci, V., Hamann, B.: Efficient computation of morse-smale complexes for three-dimensional scalar functions. IEEE Trans. Vis. Comput. Graph. 13(6), 1440–1447 (2007)CrossRefGoogle Scholar
  61. 61.
    Hatcher, A.: Algebraic Topology. Cambridge University Press (2002)Google Scholar
  62. 62.
    Huang, K., Ni, C.C., Sarkar, R., Gao, J., Mitchell, J.S.: Bounded stretch geographic homotopic routing in sensor networks. In: INFOCOM, 2014 Proceedings IEEE, pp. 979–987. IEEE (2014)Google Scholar
  63. 63.
    Kruskal, J.B.: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29(1), 1–27 (1964)MathSciNetCrossRefMATHGoogle Scholar
  64. 64.
    Kruskal, J.B.: Nonmetric multidimensional scaling: a numerical method. Psychometrika 29(2), 115–129 (1964)MathSciNetCrossRefMATHGoogle Scholar
  65. 65.
    Kruskal, J.B., Wish, M.: Multidimensional Scaling, vol. 11. Sage (1978)Google Scholar
  66. 66.
    Lamar-Leon, J., Baryolo, R.A., Garcia-Reyes, E., Gonzalez-Diaz, R.: Gait-based carried object detection using persistent homology. In: Bayro-Corrochano, E., Hancock, E. (eds.) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, no. 8827 in Lecture Notes in Computer Science, pp. 836–843. Springer International Publishing (2014)Google Scholar
  67. 67.
    Le Roux, B., Rouanet, H.: Geometric Data Analysis. Springer, Netherlands, Dordrecht (2005)CrossRefMATHGoogle Scholar
  68. 68.
    Lee, J.A., Verleysen, M.: Nonlinear dimensionality reduction of data manifolds with essential loops. Neurocomputing 67, 29–53 (2005). doi:10.1016/j.neucom.2004.11.042
  69. 69.
    Lesnick, M.: The Optimality of the Interleaving Distance on Multidimensional Persistence Modules. arXiv:1106.5305 (2011)
  70. 70.
    Li, X., Lin, S., Yan, S., Xu, D.: Discriminant locally linear embedding with high-order tensor data. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 38(2), 342–352 (2008)CrossRefGoogle Scholar
  71. 71.
    Lum, P.Y., Singh, G., Lehman, A., Ishkanov, T., Vejdemo-Johansson, M., Alagappan, M., Carlsson, J., Carlsson, G.: Extracting insights from the shape of complex data using topology. Sci. Rep. 3 (2013). doi:10.1038/srep01236
  72. 72.
    van der Maaten, L.J., Postma, E.O., van den Herik, H.J.: Dimensionality reduction: a comparative review. J. Mach. Learn. Res. 10(1–41), 66–71 (2009)Google Scholar
  73. 73.
    Maria, C., Boissonnat, J.D., Glisse, M., Yvinec, M.: The Gudhi library: simplicial complexes and persistent homology. In: Mathematical Software-ICMS 2014, pp. 167–174. Springer (2014)Google Scholar
  74. 74.
    Mather, J.: Notes on Topological Stability. Harvard University Cambridge (1970)Google Scholar
  75. 75.
    Mischaikow, K.: Databases for the global dynamics of multiparameter nonlinear systems. Technical report, DTIC Document (2014)Google Scholar
  76. 76.
    Mischaikow, K., Kokubu, H., Mrozek, M., Pilarczyk, P., Gedeon, T., Lessard, J.P., Gameiro, M.: Chomp: Computational homology project. http://chomp.rutgers.edu
  77. 77.
    Morozov, D.: Dionysus. http://www.mrzv.org/software/dionysus/ (2011)
  78. 78.
    Morozov, D., de Silva, V., Vejdemo-Johansson, M.: Persistent cohomology and circular coordinates. Discrete Comput. Geom. 45(4), 737–759 (2011). doi:10.1007/s00454-011-9344-x
  79. 79.
    Mrozek, M.: Topological dynamics: rigorous numerics via cubical homology. In: Advances in Applied and Computational Topology: Proceedings Symposium, vol. 70, pp. 41–73. American Mathematical Society (2012)Google Scholar
  80. 80.
    Muhammad, A., Jadbabaie, A.: Decentralized computation of homology groups in networks by gossip. In: American Control Conference, ACC 2007, pp. 3438–3443. IEEE (2007)Google Scholar
  81. 81.
    Munch, E., Turner, K., Bendich, P., Mukherjee, S., Mattingly, J., Harer, J.: Probabilistic fréchet means for time varying persistence diagrams. Electron. J. Statist. 9(1), 1173–1204 (2015). doi:10.1214/15-EJS1030. http://dx.doi.org/10.1214/15-EJS1030
  82. 82.
    Nanda, V.: Perseus: The Persistent Homology Software (2012)Google Scholar
  83. 83.
    Otter, N., Porter, M.A., Tillmann, U., Grindrod, P., Harrington, H.A.: A roadmap for the computation of persistent homology. arXiv:1506.08903 [physics, q-bio] (2015)
  84. 84.
    Perea, J.A., Deckard, A., Haase, S.B., Harer, J.: Sw1pers: Sliding windows and 1-persistence scoring; discovering periodicity in gene expression time series data. BMC Bioinf. (Accepted July 2015)Google Scholar
  85. 85.
    Perea, J.A., Harer, J.: Sliding windows and persistence: an application of topological methods to signal analysis. Found. Comput. Math. 15(3), 799–838 (2013)MathSciNetCrossRefMATHGoogle Scholar
  86. 86.
    Petri, G., Expert, P., Turkheimer, F., Carhart-Harris, R., Nutt, D., Hellyer, P.J., Vaccarino, F.: Homological scaffolds of brain functional networks. J. R. Soc. Interface 11(101) (2014). doi:10.1098/rsif.2014.0873
  87. 87.
    Pokorny, F.T., Bekiroglu, Y., Exner, J., Björkman, M.A., Kragic, D.: Grasp Moduli spaces, Gaussian processes, and multimodal sensor data. In: RSS 2014 Workshop: Information-based Grasp and Manipulation Planning (2014)Google Scholar
  88. 88.
    Pokorny, F.T., Bekiroglu, Y., Kragic, D.: Grasp moduli spaces and spherical harmonics. In: Robotics and Automation (ICRA), 2014 IEEE International Conference on, pp. 389–396. IEEE (2014)Google Scholar
  89. 89.
    Pokorny, F.T., Ek, C.H., Kjellström, H., Kragic, D.: Topological constraints and kernel-based density estimation. In: Advances in Neural Information Processing Systems 25, Workshop on Algebraic Topology and Machine Learning, 8 Dec, Nevada, USA (2012)Google Scholar
  90. 90.
    Pokorny, F.T., Hang, K., Kragic, D.: Grasp moduli spaces. In: Robotics: Science and Systems (2013)Google Scholar
  91. 91.
    Pokorny, F.T., Kjellström, H., Kragic, D., Ek, C.: Persistent homology for learning densities with bounded support. In: Advances in Neural Information Processing Systems, pp. 1817–1825 (2012)Google Scholar
  92. 92.
    Pokorny, F.T., Stork, J., Kragic, D., others: Grasping objects with holes: A topological approach. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 1100–1107. IEEE (2013)Google Scholar
  93. 93.
    Richardson, E., Werman, M.: Efficient classification using the Euler characteristic. Pattern Recogn. Lett. 49, 99–106 (2014)CrossRefGoogle Scholar
  94. 94.
    Robinson, M.: Universal factorizations of quasiperiodic functions. arXiv:1501.06190 [math] (2015)
  95. 95.
    Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)CrossRefGoogle Scholar
  96. 96.
    Salamon, D.: Morse theory, the conley index and floer homology. Bull. London Math. Soc 22(2), 113–140 (1990)MathSciNetCrossRefMATHGoogle Scholar
  97. 97.
    Sexton, H., Vejdemo-Johansson, M.: jPlex. https://github.com/appliedtopology/jplex/ (2008)
  98. 98.
    Sheehy, D.R.: Linear-size approximations to the vietoris-rips filtration. Discrete Comput. Geom. 49(4), 778–796 (2013)MathSciNetCrossRefMATHGoogle Scholar
  99. 99.
    de Silva, V., Ghrist, R.: Coordinate-free coverage in sensor networks with controlled boundaries via homology. Int. J. Robot. Res. 25(12), 1205–1222 (2006). doi:10.1177/0278364906072252
  100. 100.
    de Silva, V., Ghrist, R.: Coverage in sensor networks via persistent homology. Algebraic Geom. Topol. 7, 339–358 (2007)MathSciNetCrossRefMATHGoogle Scholar
  101. 101.
    de Silva, V., Morozov, D., Vejdemo-Johansson, M.: Dualities in persistent (co)homology. Inverse Prob. 27(12), 124,003 (2011). doi:10.1088/0266-5611/27/12/124003
  102. 102.
    de Silva, V., Vejdemo-Johansson, M.: Persistent cohomology and circular coordinates. In: Hershberger, J., Fogel, E. (eds.) Proceedings of the 25th Annual Symposium on Computational Geometry, pp. 227–236. Aarhus (2009)Google Scholar
  103. 103.
    de Silva, V., Škraba, P., Vejdemo-Johansson, M.: Topological analysis of recurrent systems. In: NIPS 2012 Workshop on Algebraic Topology and Machine Learning, 8 Dec, Lake Tahoe, Nevada, pp. 1–5 (2012)Google Scholar
  104. 104.
    Singh, G., Mémoli, F., Carlsson, G.E.: Topological methods for the analysis of high dimensional data sets and 3D object recognition. In: SPBG, pp. 91–100 (2007)Google Scholar
  105. 105.
    Skraba, P., Ovsjanikov, M., Chazal, F., Guibas, L.: Persistence-based segmentation of deformable shapes. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 45–52. IEEE (2010)Google Scholar
  106. 106.
    Stork, J., Pokorny, F.T., Kragic, D., others: Integrated motion and clasp planning with virtual linking. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3007–3014. IEEE (2013)Google Scholar
  107. 107.
    Stork, J., Pokorny, F.T., Kragic, D., others: A topology-based object representation for clasping, latching and hooking. In: 2013 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 138–145. IEEE (2013)Google Scholar
  108. 108.
    Tahbaz-Salehi, A., Jadbabaie, A.: Distributed coverage verification in sensor networks without location information. IEEE Trans. Autom. Control 55(8), 1837–1849 (2010)MathSciNetCrossRefGoogle Scholar
  109. 109.
    Takens, F.: Detecting strange attractors in turbulence. Dyn. Syst. Turbul. Warwick 1980, 366–381 (1981)MathSciNetMATHGoogle Scholar
  110. 110.
    Tausz, A., Vejdemo-Johansson, M., Adams, H.: javaPlex: a research platform for persistent homology. In: Book of Abstracts Minisymposium on Publicly Available Geometric/Topological Software, p. 7 (2012)Google Scholar
  111. 111.
    Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)CrossRefGoogle Scholar
  112. 112.
    Turner, K., Mileyko, Y., Mukherjee, S., Harer, J.: Fréchet means for distributions of persistence diagrams. Discrete Comput. Geom. 52(1), 44–70 (2014)MathSciNetCrossRefMATHGoogle Scholar
  113. 113.
    Vejdemo-Johansson, M.: Sketches of a platypus: persistent homology and its algebraic foundations. Algebraic Topol.: Appl. New Dir. 620, 295–320 (2014)MathSciNetMATHGoogle Scholar
  114. 114.
    Vejdemo-Johansson, M., Pokorny, F.T., Skraba, P., Kragic, D.: Cohomological learning of periodic motion. Appl. Algebra Eng. Commun. Comput. 26(1–2), 5–26 (2015)MathSciNetCrossRefMATHGoogle Scholar
  115. 115.
    Vergne, A., Flint, I., Decreusefond, L., Martins, P.: Homology based algorithm for disaster recovery in wireless networks. In: 2014 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), pp. 685–692. IEEE (2014)Google Scholar
  116. 116.
    Worsley, K.J.: Local maxima and the expected Euler characteristic of excursion sets of \(\chi ^{2}\), F and t fields. Adv. Appl. Probab. 13–42 (1994)Google Scholar
  117. 117.
    Worsley, K.J.: Boundary corrections for the expected Euler characteristic of excursion sets of random fields, with an application to astrophysics. Adv. Appl. Probab. 943–959 (1995)Google Scholar
  118. 118.
    Worsley, K.J.: Estimating the number of peaks in a random field using the Hadwiger characteristic of excursion sets, with applications to medical images. Ann. Stat. 640–669 (1995)Google Scholar
  119. 119.
    Zarubin, D., Pokorny, F.T., Song, D., Toussaint, M., Kragic, D.: Topological synergies for grasp transfer. In: Hand Synergies—How to Tame the Complexity of Grapsing, Workshop, IEEE International Conference on Robotics and Automation (ICRA 2013), Karlsruhe, Germany. Citeseer (2013)Google Scholar
  120. 120.
    Zarubin, D., Pokorny, F.T., Toussaint, M., Kragic, D.: Caging complex objects with geodesic balls. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2999–3006. IEEE (2013)Google Scholar
  121. 121.
    Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput. Geom. 33(2), 249–274 (2005)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Computer Vision and Active Perception LaboratoryKTH Royal Institute of TechnologyStockholmSweden
  2. 2.AI LaboratoryJozef Stefan InstituteLjubljanaSlovenia

Personalised recommendations