Drivers That Structure Biodiversity in the Plankton

  • Tatiana A. RynearsonEmail author
  • Susanne Menden-Deuer


Biodiversity is a key component regulating the structure and function of planktonic ecosystems and has important ramifications for the biogeochemical footprint of phytoplankton communities. Here, we explore ideas regarding the factors that generate and maintain plankton species diversity. Recently developed methods to investigate the genetics and behavior of planktonic organisms in the laboratory and in situ have provided insights into plankton ecology and evolution, including phylogeny as well as organism interactions with the biotic and abiotic environment. We suggest that the inclusion of an organismal focus that incorporates intra-specific variation could reveal factors driving marine biodiversity, strengthen the theoretical underpinnings of plankton ecology, and enhance our understanding of the population dynamics of microbes. Identification of these structuring mechanisms is not only scientifically challenging but also has significant implications for how we understand the functioning of planktonic ecosystems and our ability to predict how these ecosystems may respond to changing climate conditions.


Plankton Biodiversity Paradox of the plankton Coexistence 


  1. Barton AD, Dutkiewicz S, Flierl G, Bragg J, Follows MJ (2010) Patterns of diversity in marine phytoplankton. Science 327:1509–1511CrossRefPubMedGoogle Scholar
  2. Benincà E, Huisman J, Heerkloss R, Johnk KD, Branco P, Van Nes EH, Scheffer M, Ellner SP (2008) Chaos in a long-term experiment with a plankton community. Nature 451:822–825CrossRefPubMedGoogle Scholar
  3. Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C, Maumus F, Otillar RP, Rayko E, Salamov A, Vandepoele K, Beszteri B, Gruber A, Heijde M, Katinka M, Mock T, Valentin K, Verret F, Berges JA, Brownlee C, Cadoret J-P, Chiovitti A, Choi CJ, Coesel S, De Martino A, Detter JC, Durkin C, Falciatore A, Fournet J, Haruta M, Huysman MJJ, Jenkins BD, Jiroutova K, Jorgensen RE, Joubert Y, Kaplan A, Kroger N, Kroth PG, La Roche J, Lindquist E, Lommer M, Martin-Jezequel V, Lopez PJ, Lucas S, Mangogna M, McGinnis K, Medlin LK, Montsant A, Secq M-PO-L, Napoli C, Obornik M, Parker MS, Petit J-L, Porcel BM, Poulsen N, Robison M, Rychlewski L, Rynearson TA, Schmutz J, Shapiro H, Siaut M, Stanley M, Sussman MR, Taylor AR, Vardi A, von Dassow P, Vyverman W, Willis A, Wyrwicz LS, Rokhsar DS, Weissenbach J, Armbrust EV, Green BR, Van de Peer Y, Grigoriev IV (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244CrossRefPubMedGoogle Scholar
  4. Boyd PW, Rynearson TA, Armstrong EA, Fu F, Hayashi K, Hu Z, Hutchins DA, Kudela RM, Litchman E, Mulholland MR, Passow U, Strzepek RF, Whittaker KA, Yu E, Thomas MK (2013) Marine phytoplankton temperature versus growth responses from polar to tropical waters – outcome of a scientific community-wide study. PLoS One 8, e63091CrossRefPubMedPubMedCentralGoogle Scholar
  5. Brand LE (1984) The salinity tolerance of 46 marine-phytoplankton isolates. Estuar Coast Shelf Sci 18:543–556CrossRefGoogle Scholar
  6. Brand LE, Guillard RRL, Murphy LS (1981) A method for the rapid and precise determination of acclimated phytoplankton reproduction rates. J Plankton Res 3:193–201CrossRefGoogle Scholar
  7. Canfield DE (2005) The early history of atmospheric oxygen: Homage to Robert M. Garrels. Annu Rev Earth Planet Sci 33(1):1–36CrossRefGoogle Scholar
  8. Casteleyn G, Leliaert F, Backeljau T, Debeer A-E, Kotaki Y, Rhodes L, Lundholm N, Sabbe K, Vyverman W (2010) Limits to gene flow in a cosmopolitan marine planktonic diatom. Proc Natl Acad Sci 107:12952–12957CrossRefPubMedPubMedCentralGoogle Scholar
  9. Collins S (2011) Competition limits adaptation and productivity in a photosynthetic alga at elevated CO2. Proc R Soc B Biol Sci 278:247–255CrossRefGoogle Scholar
  10. Collins S, Bell G (2004) Phenotypic consequences of 1,000 generations of selection at elevated CO2 in a green alga. Nature 431:566–569CrossRefPubMedGoogle Scholar
  11. Collins S, Rost B, Rynearson TA (2014) Evolutionary potential of marine phytoplankton under ocean acidification. Evol Appl 7:140–155CrossRefPubMedGoogle Scholar
  12. Cropp RA, Norbury J (2012) The mechanisms of coexistence and competitive exclusion in complex plankton ecosystem models. Ecosystems 15:200–212CrossRefGoogle Scholar
  13. Crowe SA, Dossing LN, Beukes NJ, Bau M, Kruger SJ, Frei R, Canfield DE (2013) Atmospheric oxygenation three billion years ago. Nature 501:535–538CrossRefPubMedGoogle Scholar
  14. de Vargas C, Audic S, Henry N, Decelle J, Mahé F, Logares R, Lara E, Berney C, Le Bescot N, Probert I, Carmichael M, Poulain J, Romac S, Colin S, Aury J-M, Bittner L, Chaffron S, Dunthorn M, Engelen S, Flegontova O, Guidi L, Horák A, Jaillon O, Lima-Mendez G, Lukeš J, Malviya S, Morard R, Mulot M, Scalco E, Siano R, Vincent F, Zingone A, Dimier C, Picheral M, Searson S, Kandels-Lewis S, Coordinators TO, Acinas SG, Bork P, Bowler C, Gorsky G, Grimsley N, Hingamp P, Iudicone D, Not F, Ogata H, Pesant S, Raes J, Sieracki ME, Speich S, Stemmann L, Sunagawa S, Weissenbach J, Wincker P, Karsenti E (2015) Eukaryotic plankton diversity in the sunlit ocean. Science 348(6237): DOI: 10.1126/science.1261605
  15. Du X, Peterson W, McCulloch A, Liu G (2011) An unusual bloom of the dinoflagellate Akashiwo sanguinea off the central Oregon, USA, coast in autumn 2009. Harmful Algae 10(6):784–793CrossRefGoogle Scholar
  16. Falkowski PG, Fenchel T, DeLong EF (2008) The microbial engines that drive Earth's biogeochemical cycles. Science 320(5879):1034–1039CrossRefPubMedGoogle Scholar
  17. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240CrossRefPubMedGoogle Scholar
  18. Fredrickson KA, Strom SL, Crim R, Coyne KJ (2011) Interstrain variability in physiology and genetics of Heterosigma akashiwo (Raphidophycae) from the west coast of North America. J Phycol 47(1):25–35CrossRefPubMedGoogle Scholar
  19. Gäbler-Schwarz S, Medlin LK, Leese F (2015) A puzzle with many pieces: the genetic structure and diversity of Phaeocystis antarctica Karsten (Prymnesiophyta). Eur J Phycol 50:112–124CrossRefGoogle Scholar
  20. Gause GF (1934) The struggle for existence. Hafner Press, New York, NYCrossRefGoogle Scholar
  21. Gray MW, Lukes J, Archibald JM, Keeling PJ, Doolittle FW (2010) Irremediable complexity? Science 330(5005):920–921CrossRefPubMedGoogle Scholar
  22. Green JC, Course PA, Tarran GA (1996) The life-cycle of Emiliania huxleyi: a brief review and a study of relative ploidy levels analysed by flow cytometry. J Mar Syst 9:33–44CrossRefGoogle Scholar
  23. Hardin G (1960) The competitive exclusion principle. Science 131:1292–1297CrossRefPubMedGoogle Scholar
  24. Härnström K, Ellegaard M, Andersen TJ, Godhe A (2011) Hundred years of genetic structure in a sediment revived diatom population. Proc Natl Acad Sci 108:4252–4257CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world’s marine ecosystems. Science 328(5985):1523–1528CrossRefPubMedGoogle Scholar
  26. Huisman J, Weissing FJ (1999) Biodiversity of plankton by species oscillations and chaos. Nature 402:407–410CrossRefGoogle Scholar
  27. Huisman J, Johansson AM, Folmer EO, Weissing FJ (2001) Towards a solution of the plankton paradox: the importance of physiology and life history. Ecol Lett 4:408–411CrossRefGoogle Scholar
  28. Hutchins DA, Fu F-X, Webb EA, Walworth N, Tagliabue A (2013) Taxon-specific response of marine nitrogen fixers to elevated carbon dioxide concentrations. Nat Geosci 6:790–795CrossRefGoogle Scholar
  29. Hutchinson GE (1961) The paradox of the plankton. Am Nat 95(882):137–145CrossRefGoogle Scholar
  30. Iglesias-Rodriguez D, Schofield OM, Batley J, Medlin LK, Hayes PK (2006) Intraspecific genetic diversity in the marine cocolithophore Emiliania huxleyi (Prymnesiophyceae): the use of microsatellite analysis in marine phytoplankton population studies. J Phycol 42:526–536CrossRefGoogle Scholar
  31. Károlyi G, Péntek A, Scheuring I, Tél T, Toroczkai Z (2000) Chaotic flow: the physics of species coexistence. Proc Natl Acad Sci 97(25):13661–13665. doi: 10.1073/pnas.240242797 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kerr B, Riley MA, Feldman MW, Bohannan BJM (2002) Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature 418:171–174CrossRefPubMedGoogle Scholar
  33. Kiørboe T (2008) A mechanistic approach to plankton ecology. Princeton University Press, Princeton, NJ, p 224Google Scholar
  34. Lakeman M, Cattolico RA (2007) Cryptic diversity in phytoplankton cultures is revealed using a simple plating technique. J Phycol 43:663–674CrossRefGoogle Scholar
  35. Lee CE, Remfert JL, Gelembiuk GW (2003) Evolution of physiological tolerance and performance during freshwater invasions. Integr Comp Biol 43(3):439–449CrossRefPubMedGoogle Scholar
  36. Levin S (1976) Population dynamic models in heterogeneous environments. Annu Rev Ecol Syst 7:287–310CrossRefGoogle Scholar
  37. Levin S (1992) The problem of pattern and scale in ecology: the Robert H. MacArthur award lecture. Ecology 73(6):1943–1967CrossRefGoogle Scholar
  38. Menden-Deuer S (2010) High-correlation of individual motility enhances population dispersal rates in a heterotrophic protist. PLoS Comput Biol 6(10):e1000943CrossRefGoogle Scholar
  39. Menden-Deuer S, Montalbano A (2015) Bloom formation potential in the toxic dinoflagellate Akashiwo sanguinea: clues from movement behaviors and growth characteristics. Harmful Algae 47:75–85. doi: 10.1016/j.hal.2015.06.001 CrossRefGoogle Scholar
  40. Menden-Deuer S, Rowlett J (2014) Many ways to stay in the game: individual variability maintains high biodiversity in planktonic microorganisms. J R Soc Interface 11:20140031CrossRefPubMedPubMedCentralGoogle Scholar
  41. Moal J, Martin-Jezequel V, Harris RP, Samain JF, Poulet SA (1987) Inter- specific and intraspecific variability of the chemical-composition of marine-phytoplankton. Oceanol Acta 10(3):339–346Google Scholar
  42. Record NR, Pershing AJ, Maps F (2013) The paradox of “the paradox of the plankton”. ICES J Mar Sci 70:1–5CrossRefGoogle Scholar
  43. Richlen ML, Erdner DL, McCauley LAR, Libera K, Anderson DM (2012) Extensive genetic diversity and rapid population differentiation during blooms of Alexandrium fundyense (Dinophyceae) in an isolated salt pond on Cape Cod, MA, USA. Ecol Evol 2:2583–2594CrossRefGoogle Scholar
  44. Rynearson TA, Armbrust EV (2000) DNA fingerprinting reveals extensive genetic diversity in a field population of the centric diatom Ditylum brightwellii. Limnol Oceanogr 45:1329–1340CrossRefGoogle Scholar
  45. Rynearson TA, Armbrust EV (2004) Genetic differentiation among populations of the planktonic marine diatom Ditylum brightwellii (Bacillariophyceae). J Phycol 40:34–43CrossRefGoogle Scholar
  46. Rynearson TA, Armbrust EV (2005) Maintenance of clonal diversity during a spring bloom of the centric diatom Ditylum brightwellii. Mol Ecol 14:1631–1640CrossRefPubMedGoogle Scholar
  47. Rynearson TA, Newton JA, Armbrust EV (2006) Spring bloom development, genetic variation and population succession in the planktonic diatom Ditylum brightwellii. Limnol Oceanogr 51:1249–1261CrossRefGoogle Scholar
  48. Rynearson TA, Richardson K, Lampitt RS, Sieracki ME, Poulton AJ, Lyngsgaard MM, Perry MJ (2013) Major contribution of diatom resting spores to vertical flux in the sub-polar North Atlantic. Deep Sea Res I Oceanogr Res Papers 82:60–71CrossRefGoogle Scholar
  49. Sanjuan R, Moya A, Elena S (2004) The distribution of fitness effects caused by single-nucleotide substitutions in an RNA virus. Proc Natl Acad Sci U S A 101:8396–8401CrossRefPubMedPubMedCentralGoogle Scholar
  50. Schaum E, Rost B, Millar AJ, Collins C (2013) Variation in plastic responses of a globally distributed picoplankton species to ocean acidification. Nat Clim Change 3:298–302CrossRefGoogle Scholar
  51. Smetacek V (2012) Making sense of ocean biota: how evolution and biodiversity of land organisms differ from that of the plankton. J Biosci 37:589–607CrossRefPubMedGoogle Scholar
  52. Thomas MK, Kremer CT, Klausmeier CA, Litchman E (2012) A global pattern of thermal adaptation in marine phytoplankton. Science 338(6110):1085–1088CrossRefPubMedGoogle Scholar
  53. Tilman D (1994) Competition and biodiversity in spatially structured habitats. Ecology 75:2–16CrossRefGoogle Scholar
  54. Ward B (2002) How many species of prokaryotes are there? Proc Natl Acad Sci U S A 99(16):10234–10236CrossRefPubMedPubMedCentralGoogle Scholar
  55. White AE, Watkins-Brandt KE, McKibben SM, Wood AM, Hunter M, Forster Z, Du X, Peterson WT (2014) Large-scale bloom of Akashiwo sanguinea in the Northern California current system in 2009. Harmful Algae 37:38–46CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Graduate School of OceanographyUniversity of Rhode IslandNarragansettUSA

Personalised recommendations