Advertisement

Physiology of Photosynthetic Organisms Within Biological Soil Crusts: Their Adaptation, Flexibility, and Plasticity

  • T. G. Allan GreenEmail author
  • Michael C. F. Proctor
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 226)

Abstract

All photosynthetic organisms in biological soil crusts (“plants”) are poikilohydric, that is, their water content tends to equilibrate with that of their surroundings. The importance of scale and microclimate for biocrust functioning is emphasized. An outline is given of the water relations of poikilohydric plants, to which external capillary water is physiologically important. In general, organisms in biocrusts are desiccation tolerant, that is, they can cease metabolism on drying out to 5–10 % relative water content (RWC) and resume metabolism within a few minutes or an hour or two upon remoistening. When dry they can withstand temperatures from far below freezing to >60 °C. Generally too they are adapted to brightly lit exposed environments. Lichens are strongly focused on habitats with transient water availability and can stand desiccation with rapid recovery on rewetting. Bryophytes are able to occupy moister (often seasonal) sites from which lichens tend to be excluded, and recovery after desiccation is slower and desiccation tolerance may be inducible. Water sources to biocrusts are discussed including rainfall, the contribution of humid air and dew, and impaction of water droplets from mist or clouds. The units used in different fields of research which impinge on biocrusts (dry weight, thallus area, precipitation equivalent), and interconversions between them, are considered. An outline is given of the responses of poikilohydric plants to environmental factors, including to water content, access to and response to CO2 concentration, and to light and temperature. Protection against UVB and excess PAR is outlined. The proportion of time spent wet (active) and dry (inactive) by biocrusts and the means of measuring them are also discussed. The importance of distinguishing the environment of the organisms making up the biocrust, from the overall “climate,” is emphasized.

Keywords

Relative Water Content Desiccation Tolerance Biological Soil Crust Mojave Desert Full Turgor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abel WO (1956) Die Austrocknungsresistenz der Laubmoose. Österreichische Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse, Sitzungsberichte, Abteilung 1, 165:619–707Google Scholar
  2. Alpert P (2000) The discovery, scope, and puzzle of desiccation tolerance in plants. Plant Ecol 151:5–17CrossRefGoogle Scholar
  3. Alpert P, Oechel WC (1987) Comparative patterns of net photosynthesis in an assemblage of mosses with contrasting microdistributions. Am J Bot 74:1787–1796CrossRefGoogle Scholar
  4. Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639PubMedCrossRefGoogle Scholar
  5. Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396PubMedPubMedCentralCrossRefGoogle Scholar
  6. Badger MR, Pfanz H, Büdel B, Heber U, Lange OL (1993) Evidence for the functioning of photosynthetic CO2 concentrating mechanisms in lichens containing green algal and cyanobacterial photobionts. Planta 191:57–70CrossRefGoogle Scholar
  7. Baker NR (2008) Chlorophyll fluorescence: a probe for photosynthesis in vivo. Annu Rev Plant Biol 59:89–113PubMedCrossRefGoogle Scholar
  8. Barker DH, Stark LR, Zimpfer JF, McLetchie ND, Smith SD (2005) Evidence of drought-induced stress on biotic crust moss in the Mojave Desert. Plant Cell Environ 28:939–947CrossRefGoogle Scholar
  9. Barry RG, Chorley RJ (2003) Atmosphere, weather and climate, 8th edn. Routledge, LondonGoogle Scholar
  10. Barták M, Váczi P (2014) Long-term fluorometric measurements of photosynthetic processes in Antarctic moss Bryum sp. during austral summer season. Czech Polar Rep 4:63–72CrossRefGoogle Scholar
  11. Beckett RP (1995) Some aspects of the water relations of lichens from habitats of contrasting water status studied using thermocouple psychrometry. Ann Bot 76:211–217CrossRefGoogle Scholar
  12. Beckett RP (1996) Some aspects of the water relations of the lichen Parmotrema tinctorum measured using thermocouple psychrometry. Lichenologist 28:257–266Google Scholar
  13. Beckett RP (1997) Pressure-volume analysis of a range of poikilohydrous plants implies the existence of negative turgor in vegetative cells. Ann Bot 79:145–152CrossRefGoogle Scholar
  14. Belnap J, Lange OL (2005) Lichens and microfungi in biological soil crusts: community structure, physiology, and ecological functions. In: Dighton J, White JF, Oudemans P (eds) The fungal community. Its organization and role in the ecosystem, 3rd edn. CTR Press, Taylor & Francis, Boca Raton, FL, pp 117–138CrossRefGoogle Scholar
  15. Bertsch A (1966) Über den CO2-Gaswechsel einiger Flechten nach Wasserdampfaufnahme. Planta 68:157–166PubMedCrossRefGoogle Scholar
  16. Bewley JD (1979) Physiological aspects of desiccation tolerance. Annu Rev Plant Physiol 30:195–238CrossRefGoogle Scholar
  17. Bewley JD, Krochko JE (1982) Desiccation tolerance. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology, vol 12B, Physiological ecology II. Springer, Berlin, pp 325–378Google Scholar
  18. Billi D, Potts M (2002) Life and death of dried prokaryotes. Res Microbiol 153:7–12PubMedCrossRefGoogle Scholar
  19. Breuil-Sée A (1993) Recorded desiccation-survival times of bryophytes. J Bryol 17:679–680CrossRefGoogle Scholar
  20. Bristol BM (1916) On the remarkable retention of viability in moss protonema. New Phytol 15:137–143CrossRefGoogle Scholar
  21. Buch H (1945) Über die Wasser- und Mineralstoffversorgung der Moose. Commentationes Biologici Societas Scientiarum Fennicae [Part 1] 9(16):1Google Scholar
  22. Buch H (1947) Über die Wasser- und Mineralstoffversorgung der Moose. Commentationes Biologici Societas Scientiarum Fennicae [Part 2] 9(20):1–61Google Scholar
  23. Büdel B, Karsten U, Garcia-Pichel F (1997) Ultraviolet-absorbing scytonemin and mycosporine-like amino acid derivates in exposed, rock inhabiting cyanobacterial lichens. Oecologia 112:165–172CrossRefGoogle Scholar
  24. Buitink J, Hoekstra FA, Leprince O (2002) Biochemistry and biophysics of tolerance systems. In: Desiccation and survival in plants: drying without dying, pp 293–318Google Scholar
  25. Campbell GS (1977) An introduction to environmental biophysics. Springer, New YorkCrossRefGoogle Scholar
  26. Coe KK, Belnap J, Sparks JP (2012) Precipitation-driven carbon balance controls survivorship of desert biocrust mosses. Ecology 93:1626–1636PubMedCrossRefGoogle Scholar
  27. Coe KK, Sparks JP, Belnap J (2014) Physiological ecology of dryland biocrust mosses. In: Photosynthesis in bryophytes and early land plants. Springer, Dordrecht, pp 291–308Google Scholar
  28. Colesie C, Gommeaux M, Green TGA, Büdel B (2014a) Biological soil crusts in continental Antarctica: Garwood Valley, southern Victoria Land, and Diamond Hill, Darwin Mountains region. Antarct Sci 26:115–123CrossRefGoogle Scholar
  29. Colesie C, Green TGA, Haferkamp I, Büdel B (2014b) Habitat stress initiates changes in composition, CO2 gas exchange and C-allocation as life traits in biological soil crusts. ISME J 8:2104–2115PubMedPubMedCentralCrossRefGoogle Scholar
  30. Cowan IR, Lange OL, Green TGA (1992) Carbon dioxide exchange in lichens: determination of transport and carboxylation characteristics. Planta 187:282–294PubMedCrossRefGoogle Scholar
  31. Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol 54:579–599PubMedCrossRefGoogle Scholar
  32. Crowe JH, Carpenter JF, Crowe LM (1998) The role of vitrification in anhydrobiosis. Annu Rev Physiol 60:73–103PubMedCrossRefGoogle Scholar
  33. Csintalan Z, Takács Z, Proctor MCF, Nagy Z, Tuba Z (2000) Early morning photosynthesis of the moss Tortula ruralis following summer dew fall in a Hungarian temperate dry sandy grassland. Plant Ecol 151:51–54CrossRefGoogle Scholar
  34. Del-Prado R, Sancho G (2000) Water relations and photosynthetic performance of fruticose lichens from the semiarid Southeast of Spain. Flora 195:51–60Google Scholar
  35. Demmig-Adams B, Adams WW (2006) Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol 172:11–21PubMedCrossRefGoogle Scholar
  36. Dilks TJK, Proctor MCF (1976) Seasonal variation in desiccation tolerance in some British bryophytes. J Bryol 9:239–247CrossRefGoogle Scholar
  37. Dilks TJK, Proctor MCF (1979) Photosynthesis, respiration and water content in bryophytes. New Phytol 82:97–114CrossRefGoogle Scholar
  38. Dukes M, Eden P (1997) Weather records and extremes. In: Hulme M, Barrow E (eds) Climates of the British Isles: present, past and future. Routledge, London, pp 262–295Google Scholar
  39. Farrar JF (1976a) Ecological physiology of the lichen Hypogymnia physodes. I. Some effects of constant water saturation. New Phytol 77:93–103CrossRefGoogle Scholar
  40. Farrar JF (1976b) Ecological physiology of the lichen Hypogymnia physodes. II. Effects of wetting and drying cycles and the concept of ‘physiological buffering’. New Phytol 77:105–113CrossRefGoogle Scholar
  41. Farrar JF, Smith DC (1976) Ecological physiology of the lichen Hypogymnia physodes. III. The importance of the rewetting phase. New Phytol 77:115–125CrossRefGoogle Scholar
  42. Gates DM (1980) Biophysical ecology. Springer, New YorkCrossRefGoogle Scholar
  43. Geiger R (1950) The climate near the ground. Harvard University Press, Cambridge, MAGoogle Scholar
  44. Gerotto C, Alboresi A, Giacometti GM, Bassi R, Morosinotto T (2012) Coexistence of plant and algal energy dissipation mechanisms in the moss Physcomitrella patens. New Phytol 196:763–773PubMedCrossRefGoogle Scholar
  45. Glime JM (2007) Bryophyte ecology, vol 1, Physiological ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. http://www.bryoecol.mtu.edu/. Accessed 20 Mar 2015
  46. Graham EA, Hamilton MP, Mishler BD, Rundel PW, Hansen MH (2006) Use of a networked digital camera to estimate net CO2 uptake of a desiccation-tolerant moss. Int J Plant Sci 167:751–758CrossRefGoogle Scholar
  47. Green TGA, Lange OL (1994) Photosynthesis in poikilohydric plants: a comparison of lichens and bryophytes. In: Schulze E-D, Caldwell MM (eds) Ecophysiology of photosynthesis, vol 100, Ecological studies. Springer, Berlin, pp 319–341Google Scholar
  48. Green TGA, Snelgar WP (1981) Carbon dioxide exchange in lichens: relationship between net photosynthetic rate and CO2 concentration. Plant Physiol 68:199–201PubMedPubMedCentralCrossRefGoogle Scholar
  49. Green TGA, Snelgar WP, Wilkins AL (1985) Photosynthesis, water relations and thallus structure of Stictaceae lichens. In: Brown DH (ed) Lichen physiology and cell biology. Plenum, New York, pp 57–75CrossRefGoogle Scholar
  50. Green TGA, Kilian E, Lange OL (1991) Pseudocyphellaria dissimilis: a desiccation-sensitive, highly shade-adapted lichen from New Zealand. Oecologia 85:498–503CrossRefGoogle Scholar
  51. Green TGA, Büdel B, Meyer A, Zellner H, Lange OL (1997) Temperate rainforest lichens in New Zealand: light response of photosynthesis. NZ J Bot 35:493–504CrossRefGoogle Scholar
  52. Green TGA, Maseyk K, Pannewitz S, Seppelt RD, Schroeter B (2000a) Extreme elevated in situ carbon dioxide levels around the moss Bryum subrotundifolium JAEG., BER. S. GALL. in Antarctica. Biblio Lichenol 75:389–396Google Scholar
  53. Green TGA, Schroeter B, Seppelt RD (2000b) Effect of temperature, light and ambient UV on the photosynthesis of the moss Bryum argenteum Hedw. in continental Antarctica. In: Davison W, Howard-Williams C, Broady P (eds) Antarctic ecosystems: models for a wider ecological understanding. Canterbury University, Canterbury, pp 165–170Google Scholar
  54. Green TGA, Schroeter B, Sancho LG (2007) Plant life in Antarctica. In: Pugnaire FI, Valladares F (eds) Handbook of functional plant ecology, 2nd edn. Marcel Dekker, New York, pp 389–433Google Scholar
  55. Green TGA, Sancho LG, Pintado A (2011a) Ecophysiology of desiccation/rehydration cycles in mosses and lichens. In: Lüttge et al (eds) Plant desiccation tolerance, vol 215, Ecological studies. Springer, BerlinGoogle Scholar
  56. Green TGA, Sancho LG, Pintado A, Schroeter B (2011b) Functional and spatial pressures on terrestrial vegetation in Antarctica forced by global warming. Polar Biol 34:1643–1656Google Scholar
  57. Hamerlynck EP, Tuba Z, Csintalan Z, Nagy Z, Henebry G, Goodin D (2000) Diurnal variation in photochemical dynamics and surface reflectance of the desiccation-tolerant moss, Tortula ruralis. Plant Ecol 151:55–63CrossRefGoogle Scholar
  58. Hearnshaw GF, Proctor MCF (1982) The effect of temperature on the survival of dry bryophytes. New Phytol 90:221–228CrossRefGoogle Scholar
  59. Heber U, Bilger W, Shuvalov VA (2006a) Thermal energy dissipation in reaction centres and in the antenna of photosystem II protects desiccated poikilohydric mosses against photo-oxidation. J Exp Bot 57:2993–3006PubMedCrossRefGoogle Scholar
  60. Heber U, Lange OL, Shuvalov VA (2006b) Conservation and dissipation of light energy as complementary processes: homoiohydric and poikilohydric autotrophs. J Exp Bot 57:1211–1223PubMedCrossRefGoogle Scholar
  61. Heber U, Azarkovic M, Shuvalov V (2007) Activation of mechanisms of photoprotection by desiccation and by light: poikilohydric photoautotrophs. J Exp Bot 58:2745–2759PubMedCrossRefGoogle Scholar
  62. Hinshiri HM, Proctor MCF (1971) The effect of desiccation on subsequent assimilation and respiration of the bryophytes Anomodon viticulosus and Porella platyphylla. New Phytol 70:527–538CrossRefGoogle Scholar
  63. Hovenden MJ, Seppelt RD (1995) Utility of modulated fluorescence in measuring photosynthetic activity of Antarctic plants: field and laboratory studies. Funct Plant Biol 22:321–330Google Scholar
  64. Hui R, Li XR, Jia RL, Liu LC, Zhao RM, Zhao X, Wei YP (2014) Photosynthesis of two moss crusts from the Tengger Desert with contrasting sensitivity to supplementary UV-B radiation. Photosynthetica 52:36–49CrossRefGoogle Scholar
  65. Jones HG (1992) Plants and microclimate, 2nd edn. Cambridge University Press, Cambridge, UKGoogle Scholar
  66. Kappen L, Valladares F (2007) Opportunistic growth and desiccation tolerance: the ecological success of poikilohydrous autotrophs. In: Pugnaire FI, Valladares F (eds) Handbook of functional plant ecology, 2nd edn. Marcel Dekker, New York, pp 7–67Google Scholar
  67. Kappen L, Schroeter B, Green TGA, Seppelt RD (1998) Chlorophyll a fluorescence and CO2 exchange of Umbilicaria aprina under extreme light stress in the cold. Oecologia 113:325–331CrossRefGoogle Scholar
  68. Keever C (1957) Establishment of Grimmia laevigata on bare granite. Ecology 38:422–429CrossRefGoogle Scholar
  69. Kershaw KA (1972) The relationship between moisture content and net assimilation rate of lichen thalli and its ecological significance. Can J Bot 50:543–555CrossRefGoogle Scholar
  70. Kidron GJ, Barinova S, Vonshak A (2012) The effects of heavy winter rains and rare summer rains on biological soil crusts in the Negev Desert. Catena 95:6–11CrossRefGoogle Scholar
  71. Kranner I, Beckett RP, Wornik S, Zorn M, Pfeifhofer HW (2002) Revival of a resurrection plant correlates with its antioxidant status. Plant J 31:13–24PubMedCrossRefGoogle Scholar
  72. Kranner I, Beckett R, Hochman A, Nash TH (2008) Desiccation-tolerance in lichens: a review. Bryologist 111:576–593CrossRefGoogle Scholar
  73. Lan S, Wu L, Zhang D, Hu C (2012) Composition of photosynthetic organisms and diurnal changes of photosynthetic efficiency in algae and moss crusts. Plant Soil 351:325–336CrossRefGoogle Scholar
  74. Lange OL (1955) Untersuchungen über die Hitzeresistenz der Moose in Beziehung zu ihrer Verbreitung. I. Die Resistenz stark ausgetrockneter Moose. Flora 142:381–399Google Scholar
  75. Lange OL (1965) Der CO2-Gaswechsel von Flechten bei tiefen Temperaturen. Planta 64:1–19CrossRefGoogle Scholar
  76. Lange OL (1969) CO2-Gaswechsel von Moosen nach Wasserdampfaufnahme aus dem Luftraum. Planta 89:90–94PubMedCrossRefGoogle Scholar
  77. Lange OL (2000) Photosynthetic performance of a gelatinous lichen under temperate habitat conditions: long-term monitoring of CO2 exchange of Collema cristatum. Biblio Lichenol 75:307–332Google Scholar
  78. Lange OL (2001) Photosynthesis of soil-crust biota as dependent on environmental factors. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management, vol 150, Ecological studies. Springer, Berlin, pp 217–240CrossRefGoogle Scholar
  79. Lange OL (2002) Photosynthetic productivity of the epilithic lichen Lecanora muralis: long-term field monitoring of CO2 exchange and its physiological interpretation. I. Dependence of photosynthesis on water content, light, temperature, and CO2 concentration from laboratory measurements. Flora 197:233–249CrossRefGoogle Scholar
  80. Lange OL (2003) Photosynthetic productivity of the epilithic lichen Lecanora muralis: long-term field monitoring of CO2 exchange and its physiological interpretation. III. Diel, seasonal, and annual carbon budgets. Flora 198:277–292Google Scholar
  81. Lange OL, Green TGA (2003) Photosynthetic performance of a foliose lichen of biological soil crust communities: long-term monitoring of the CO2 exchange of Cladonia convoluta under temperate habitat conditions. Biblio Lichenol 86:257–280Google Scholar
  82. Lange OL, Green TGA (2004) Photosynthetic performance of the squamulose soil-crust lichen Squamarina lentigera: laboratory measurements and long-term monitoring of CO2 exchange in the field. Biblio Lichenol 88:363–390Google Scholar
  83. Lange OL, Green TGA (2005) Lichens show that fungi can acclimate their respiration to seasonal changes in temperature. Oecologia 142:11–19PubMedCrossRefGoogle Scholar
  84. Lange OL, Green TGA, Ziegler H (1988) Water status related photosynthesis and carbon isotope discrimination in species of the lichen genus Pseudocyphellaria with green or blue-green photobionts and in photosymbiodemes. Oecologia 75:494–501CrossRefGoogle Scholar
  85. Lange OL, Meyer A, Zellner H, Ullmann I, Wessels DCJ (1990) Eight days in the life of a desert lichen: water relations and photosynthesis of Teloschistes capensis in the coastal fog zone of the Namib Desert. Madoqua 17:17–30Google Scholar
  86. Lange OL, Büdel B, Heber U, Meyer A, Zellner H, Green TGA (1993) Temperate rainforest lichens in New Zealand: high thallus water content can severely limit photosynthetic CO2 exchange. Oecologia 95:303–313CrossRefGoogle Scholar
  87. Lange OL, Meyer A, Zellner H, Heber U (1994) Photosynthesis and water relations of lichen soil crusts: field measurements in the coastal fog zone of the Namib Desert. Funct Ecol 8:253–264CrossRefGoogle Scholar
  88. Lange OL, Reichenberger H, Meyer A (1995) High thallus water content and photosynthetic CO2 exchange of lichens. Laboratory experiments with soil crust species from local xerothermic steppe formations in Franconia, Germany. In: Daniels FJA, Schulz M, Peine J (eds) Flechten Follmann. Contributions to lichenology in honor of Gerhard Follmann. Geobotanical and Phytotaxonomical Study Group, Universität Köln, Köln, pp 139–153Google Scholar
  89. Lange OL, Belnap J, Reichenberger H, Meyer A (1997) Photosynthesis of green algal soil crust lichens from arid lands in southern Utah, USA: role of water content on light and temperature responses of CO2 exchange. Flora 192:1–15Google Scholar
  90. Lange OL, Belnap J, Reichenberger H (1998) Photosynthesis of the cyanobacterial soil crust lichen Collema tenax from arid lands in southern Utah, USA: role of water content on light and temperature response of CO2 exchange. Funct Ecol 12:195–202CrossRefGoogle Scholar
  91. Lange OL, Green TGA, Melzer B, Meyer A, Zellner H (2006) Water relations and CO2 exchange of the terrestrial lichen Teloschistes capensis in the Namib fog desert: measurements during two seasons in the field and under controlled conditions. Flora 201:268–280CrossRefGoogle Scholar
  92. Lange OL, Green TGA, Meyer A, Zellner H (2008) Epilithic lichens in the Namib fog desert: field measurements of water relations and carbon dioxide exchange. Sauteria 15:283–302Google Scholar
  93. Ligrone R, Duckett JG (1994) Cytoplasmic polarity and endoplasmic microtubules associated with the nucleus and organelles are ubiquitous features of food-conducting cells in bryoid mosses (Bryophyta). New Phytol 127:601–614CrossRefGoogle Scholar
  94. Longton RE (1981) Inter-population variation in morphology and physiology in the cosmopolitan moss Bryum argenteum Hedw. J Bryol 11:501–520CrossRefGoogle Scholar
  95. Maheu J (1922) Régéneration du Barbula ruralis après quatorze ans de sécheresse par protonémas primaires propaguliféres et protonémas secondaires bulbigénes. Bulletin de la Société Botanique de France 69:330–334CrossRefGoogle Scholar
  96. Malta N (1921) Versuche über die Widerstandsfähigkeit der Moose gegen Austrocknung. Acta Universitatis Latviensis 1:125–129Google Scholar
  97. Mansour KS, Hallet JN (1981) Effects of desiccation on DNA synthesis and the cell cycle of the moss Polytrichum formosum. New Phytol 87:315–324CrossRefGoogle Scholar
  98. Marschall M, Proctor MCF (2004) Are bryophytes shade plants? Photosynthetic light responses and proportions of chlorophyll a, chlorophyll b and total carotenoids. Ann Bot 94:593–603PubMedPubMedCentralCrossRefGoogle Scholar
  99. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence – a practical guide. J Exp Bot 51:659–668PubMedCrossRefGoogle Scholar
  100. Merinero S, Hilmo O, Gauslaa Y (2014) Size is a main driver for hydration traits in cyano-and cephalolichens of boreal rainforest canopies. Fungal Ecol 7:59–66CrossRefGoogle Scholar
  101. Monteith JL, Unsworth MH (1990) Principles of environmental physics, 2nd edn. Edward Arnold, LondonGoogle Scholar
  102. Nardini A, Marchetto A, Tretiach M (2013) Water relation parameters of six Peltigera species correlate with their habitat preferences. Fungal Ecol 6:397–407CrossRefGoogle Scholar
  103. Niyogi KK, Li X-P, Rosenberg V, Jung H-S (2005) Is PsbS the site of non-photochemical quenching in photosynthesis? J Exp Bot 56:375–382PubMedCrossRefGoogle Scholar
  104. Oliver MJ (1991) Influence of protoplasmic water loss on the control of protein synthesis in the desiccation-tolerant moss Tortula ruralis: ramifications for a repair-based mechanism of desiccation tolerance. Plant Physiol 97:1501–1511PubMedPubMedCentralCrossRefGoogle Scholar
  105. Oliver MJ (2009) Biochemical and molecular mechanisms of desiccation tolerance in bryophytes. In: Goffinet B, Shaw AJ (eds) Bryophyte biology, 2nd edn. Cambridge University Press, Cambridge, pp 269–297Google Scholar
  106. Oliver MJ, Bewley JD (1997) Desiccation tolerance of plant tissues: a mechanistic overview. Hortic Rev 18:171–214Google Scholar
  107. Palmqvist K (2000) Carbon economy in lichens. New Phytol 148:11–36CrossRefGoogle Scholar
  108. Pannewitz S, Green TGA, Scheidegger C, Schlensog M, Schroeter B (2003) Activity pattern of the moss Hennediella heimii (Hedw.) Zand. in the Dry Valleys, Southern Victoria Land, Antarctica during the mid-austral summer. Polar Biol 26:545–550CrossRefGoogle Scholar
  109. Pannewitz S, Green TGA, Maysek K, Schlensog M, Seppelt RD, Sancho LG, Türk R, Schroeter B (2005) Photosynthetic responses of three common mosses from continental Antarctica. Antarct Sci 17:341–352CrossRefGoogle Scholar
  110. Pintado A, Sancho LG, Green TGA, Blanquer JM, Lazero R (2005) Functional ecology of the biological soil crust in semiarid SE Spain: sun and shade populations of Diploschistes diacapsis (Ach.) Lumbsch. Lichenologist 37:425–432CrossRefGoogle Scholar
  111. Pintado A, Sancho LG, Blanqueri JM, Green TGA, Lazaro R (2010) Microclimatic factors and photosynthetic activity of crustose lichens from the semiarid southeast of Spain: long-term measurements for Diploschistes diacapsis. Biblio Lichenol 105:211–224Google Scholar
  112. Pressel S, Ligrone R, Duckett JG (2006) Effects of de- and rehydration on food-conducting cells in the moss Polytrichum formosum: a cytological study. Ann Bot 98:67–76PubMedPubMedCentralCrossRefGoogle Scholar
  113. Pressel S, Duckett JG, Ligrone R, Proctor MCF (2009) Effects of de- and rehydration in desiccation-tolerant liverworts: a physiological and cytological study. Int J Plant Sci 170:182–199CrossRefGoogle Scholar
  114. Proctor MCF (1979a) Structure and eco-physiological adaptation in bryophytes. In: Clarke GCS, Duckett JG (eds) Bryophyte systematics. Academic Press, London, pp 479–509Google Scholar
  115. Proctor MCF (1979b) Surface wax on the leaves of some mosses. J Bryol 10:531–538CrossRefGoogle Scholar
  116. Proctor MCF (1999) Water-relations parameters of some bryophytes evaluated by thermocouple psychrometry. J Bryol 21:269–277CrossRefGoogle Scholar
  117. Proctor MCF (2000a) Physiological ecology. In: Shaw AJ, Goffinet B (eds) Bryophyte biology, 2nd edn. Cambridge University Press, Cambridge, pp 225–247CrossRefGoogle Scholar
  118. Proctor MCF (2000b) The bryophyte paradox: tolerance of desiccation, evasion of drought. Plant Ecol 151:41–49CrossRefGoogle Scholar
  119. Proctor MCF (2002) Ecophysiological measurements on two pendulous forest mosses from Uganda, Pilotrichella ampullacea and Floribundaria floribunda. J Bryol 24:223–232CrossRefGoogle Scholar
  120. Proctor MCF (2004) How long must a desiccation-tolerant moss tolerate desiccation? Some results of two years’ data-logging on Grimmia pulvinata. Physiol Plant 122:21–27CrossRefGoogle Scholar
  121. Proctor MCF (2005) Why do Polytrichaceae have lamellae? J Bryol 27:221–229CrossRefGoogle Scholar
  122. Proctor MCF (2009) Physiological ecology. In: Shaw AJ, Goffinet B (eds) Bryophyte biology, 2nd edn. Cambridge University Press, Cambridge, pp 237–268Google Scholar
  123. Proctor MCF (2010) Recovery rates of chlorophyll-fluorescence parameters in desiccation-tolerant plants: fitted logistic curves as a versatile and robust source of comparative data. Plant Growth Regul 62:233–240CrossRefGoogle Scholar
  124. Proctor MCF (2011) Climatic responses and limits of bryophytes: comparisons and contrasts with vascular plants. In: Tuba Z, Slack NG, Stark LR (eds) Bryophyte ecology and climatic change. Cambridge University Press, Cambridge, pp 35–54Google Scholar
  125. Proctor MCF (2014) The diversification of bryophytes in evolving environments. In: Hanson DT, Rice SK (eds) Photosynthesis of bryophytes and early land plants. Springer, New York, pp 59–77CrossRefGoogle Scholar
  126. Proctor MCF, Pence VC (2002) Vegetative tissues: bryophytes, vascular resurrection plants and vegetative propagules. In: Desiccation and survival in plants: drying without dying, pp 207–237Google Scholar
  127. Proctor MCF, Smirnoff N (2000) Rapid recovery of photosystems on rewetting desiccation-tolerant mosses: chlorophyll fluorescence and inhibitor experiments. J Exp Bot 51:1695–1704PubMedCrossRefGoogle Scholar
  128. Proctor MCF, Smirnoff N (2011) Ecophysiology of photosynthesis in bryophytes: major roles for oxygen photoreduction and non-photochemical quenching at high irradiance in mosses with unistratose leaves? Physiol Plant 141:130–140PubMedCrossRefGoogle Scholar
  129. Proctor MCF, Smirnoff N (2015) Photoprotection in bryophytes: rate and extent of dark relaxation of nonphotochemical quenching (NPQ) of chlorophyll fluorescence. J Bryol 37:171–177CrossRefGoogle Scholar
  130. Proctor MCF, Tuba Z (2002) Poikilohydry and homoiohydry: antithesis or spectrum of possibilities? New Phytol 156:327–349CrossRefGoogle Scholar
  131. Proctor MCF, Nagy Z, Zs C, Takács Z (1998) Water-content components in bryophytes: analysis of pressure–volume relationships. J Exp Bot 49:1845–1854CrossRefGoogle Scholar
  132. Proctor MCF, Ligrone R, Duckett JG (2007a) Desiccation tolerance in the moss Polytrichum formosum: physiological and fine-structural changes during desiccation and recovery. Ann Bot 99:75–93CrossRefGoogle Scholar
  133. Proctor MCF, Oliver MJ, Wood AJ, Alpert P, Stark LR, Cleavitt NL, Mishler BD (2007b) Desiccation-tolerance in bryophytes: a review. Bryologist 110:595–621CrossRefGoogle Scholar
  134. Raggio J, Pintado A, Vivas M, Sancho LG, Büdel B, Colesie C, Weber B, Schroeter B, Lázaro R, Green TGA (2014) Continuous chlorophyll fluorescence, gas exchange and microclimate monitoring in a natural soil crust habitat in Tabernas badlands, Almería, Spain: progressing towards a model to understand productivity. Biodivers Conserv 23:1809–1826CrossRefGoogle Scholar
  135. Raven JA, Cockell CS, De La Rocha CL (2008) The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Philos Trans R Soc Biol Sci 363:2641–2650CrossRefGoogle Scholar
  136. Reiter R, Höftberger M, Green TGA, Türk R (2008) Photosynthesis of lichens from lichen-dominated communities in the alpine/nival belt of the Alps – II: laboratory and field measurements of CO2 exchange and water relations. Flora 203:34–46CrossRefGoogle Scholar
  137. Rey A (2014) Mind the gap: non-biological processes contributing to soil CO2 efflux. Glob Change Biol 21:1752–1761CrossRefGoogle Scholar
  138. Ried A (1960) Stoffwechsel und Verbreitungsgrenzen von Flechten. II. Wasser- und Assimilationshaushalt, Entquellungs- und Submersionsresitenz von Krustenflechten benachbarte Standorte. Flora 149:345–385Google Scholar
  139. Robinson SA, Waterman M (2014) Sunsafe bryophytes: photoprotection from excess and damaging solar radiation. In: Hanson DT, Rice SK (eds) Photosynthesis of bryophytes and early land plants, pp 113–130Google Scholar
  140. Rundel PW (1978) Ecological relationships of desert fog zone lichens. Bryologist 81:277–293CrossRefGoogle Scholar
  141. Schlensog M, Schroeter B (2000) Poikilohydry in Antarctic cryptogams and its role for photosynthetic performance in mesic and xeric habitats. Antarctic ecosystems: models for wider ecological understanding. Caxton Press, Christchurch, pp 175–182Google Scholar
  142. Schlensog M, Pannewitz S, Green TGA, Schroeter B (2004) Metabolic recovery of continental antarctic cryptogams after winter. Polar Biol 27:399–408CrossRefGoogle Scholar
  143. Schlensog M, Green TGA, Schroeter B (2013) Life form and water source interact to determine active time and environment in cryptogams: an example from the maritime Antarctic. Oecologia 173:59–72PubMedCrossRefGoogle Scholar
  144. Schroeter B, Kappen L, Schulz F, Sancho LG (2000) Seasonal variation in the carbon balance of lichens in the maritime Antarctic: long-term measurements of photosynthetic activity in Usnea aurantiaco-atra. In: Davison W, Howard-Williams C, Broady P (eds) Antarctic ecosystems: models for wider ecological understanding. New Zealand Natural Sciences, pp 258–262Google Scholar
  145. Schroeter B, Green TGA, Pannewitz S, Schlensog M, Sancho LG (2010) Fourteen degrees of latitude and a continent apart: comparison of lichen activity over two years at continental and maritime Antarctic sites. Antarct Sci 22:681–690CrossRefGoogle Scholar
  146. Schroeter B, Green TGA, Kulle D, Pannewitz S, Schlensog M, Sancho LG (2012) The moss Bryum argenteum var. muticum Brid. is well adapted to cope with high light in continental Antarctica. Antarct Sci 24:281–291CrossRefGoogle Scholar
  147. Silvola J (1985) CO2 dependence of photosynthesis in certain forest and peat mosses and simulated photosynthesis at various actual and hypothetical CO2 concentrations. Lindbergia 11:86–93Google Scholar
  148. Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58CrossRefGoogle Scholar
  149. Snelgar WP, Green TGA (1981) Ecologically-linked variation in morphology, acetylene reduction and water relations in Pseudocyphellaria dissimilis. New Phytol 87:403–411CrossRefGoogle Scholar
  150. Stålfelt MG (1938) Der Gasaustauch der Moose. Planta 27:30–60CrossRefGoogle Scholar
  151. Stark LR (2005) Phenology of patch hydration, patch temperature and sexual reproductive output over a four-year period in the desert moss Crossidium crassinerve. J Bryol 27:231–240CrossRefGoogle Scholar
  152. Stark LR, Brinda JC (2015) Developing sporophytes transition from an inducible to a constitutive ecological strategy of desiccation tolerance in the moss Aloina ambigua: effects of desiccation on fitness. Ann Bot 115(4):593–603. doi: 10.1093/aob/mcv136 PubMedPubMedCentralCrossRefGoogle Scholar
  153. Stark LR, Nichols L II, McLetchie DN, Bonine ML (2005) Do the sexes of the desert moss Syntrichia caninervis differ in desiccation tolerance? A leaf regeneration assay. Int J Plant Sci 166:21–29CrossRefGoogle Scholar
  154. Stark LR, Brinda JC, McLetchie DN (2011) Effects of increased summer precipitation and N deposition on Mojave Desert populations of the biological crust moss Syntrichia caninervis. J Arid Environ 75:457–463CrossRefGoogle Scholar
  155. Stark LR, Brinda JC, McLetchie DN, Oliver MJ (2012) Extended periods of hydration do not elicit dehardening to desiccation tolerance in regeneration trials of the moss Syntrichia caninervis. Int J Plant Sci 173:333–343CrossRefGoogle Scholar
  156. Sun HJ, Friedmann EI (2005) Communities adjust their temperature optima by shifting producer-to-consumer ratio, shown in lichens as models: II. Experimental verification. Microb Ecol 49:528–535PubMedCrossRefGoogle Scholar
  157. Tarnawski M, Melick D, Roser D, Adamson E, Adamson H, Seppelt RD (1992) In situ carbon dioxide levels in cushion and turf forms of Grimmia antarctici at Casey Station, East Antarctica. J Bryol 17:241–249CrossRefGoogle Scholar
  158. Tarnawski MG, Green TGA, Büdel B, Meyer A, Zellner H, Lange OL (1994) Diel changes of atmospheric CO2 concentration within, and above, cryptogam stands in a New Zealand temperate rainforest. NZ J Bot 32:329–336CrossRefGoogle Scholar
  159. Tuba Z, Zs C, Proctor MCF (1996) Photosynthetic responses of a moss, Tortula ruralis ssp. ruralis and the lichens Cladonia convoluta and C. furcata to water deficit and short periods of desiccation, and their ecophysiological significance: a baseline study at present CO2 concentration. New Phytol 133:353–361CrossRefGoogle Scholar
  160. Uclés O, Villagarcía L, Moro MJ, Canton Y, Domingo F (2014) Role of dewfall in the water balance of a semiarid coastal steppe ecosystem. Hydrol Proc 28:2271–2280CrossRefGoogle Scholar
  161. Uclés O, Villagarcía L, Cantón Y, Lázaro R, Domingo F (2015) Non-rainfall water inputs are controlled by aspect in a semiarid ecosystem. J Arid Environ 113:43–50CrossRefGoogle Scholar
  162. Vile D, Garnier E, Shipley B, Laurent G, Navas ML, Roumet C et al (2005) Specific leaf area and dry matter content estimate thickness in laminar leaves. Ann Bot 96:1129–1136PubMedPubMedCentralCrossRefGoogle Scholar
  163. Weber B, Berkemeier T, Ruckteschler N, Caesar J, Heintz H, Ritter H, Braß H (2016) Development and calibration of a novel sensor to quantify the water content of surface soils and biological soil crusts. In: Methods Ecol Evol 7(1):14–22. British Ecological Society, London, pp 1–9.  10.1111/2041-210X.12459
  164. Wertin TM, Phillips SL, Reed SC, Belnap J (2012) Elevated CO2 did not mitigate the effect of a short-term drought on biological soil crusts. Biol Fertil Soils 48:797–805CrossRefGoogle Scholar
  165. Wu L, Zhang Y, Zhang J, Downing A (2015) Precipitation intensity is the primary driver of moss crust-derived CO2 exchange: implications for soil C balance in a temperate desert of northwestern China. Eur J Soil Biol 67:27–34CrossRefGoogle Scholar
  166. Zhang Q, Wang S, Yang F, Yue P, Yao T, Wang W (2014) Characteristics of dew formation and distribution, and its contribution to the surface water budget in a semi-arid region in China. Boundary Layer Meteorol 154:317–331CrossRefGoogle Scholar
  167. Zhao Y, Li X, Zhang Z, Hu Y, Chen Y (2014) Biological soil crusts influence carbon release responses following rainfall in a temperate desert, northern China. Ecol Res 29:889–896CrossRefGoogle Scholar
  168. Zotz G, Rottenberger S (2001) Seasonal changes in diel CO2 exchange of three Central European moss species: a one-year field study. Plant Biol 3:661–669CrossRefGoogle Scholar
  169. Zotz G, Schweikert A, Jetz W, Westerman H (2000) Water relations and carbon gain are closely related to cushion size in the moss Grimmia pulvinata. New Phytol 148:59–67CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Biological SciencesUniversity of WaikatoHamiltonNew Zealand
  2. 2.Departamento de Biología Vegetal II, Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain
  3. 3.University of Exeter, CLES: BiosciencesExeterUK

Personalised recommendations