Advertisement

Engineering the Magnetoelectric Response in Piezocrystal-Based Magnetoelectrics: Basic Theory, Choice of Materials, Model Calculations

  • João V. Vidal
  • Andrey A. Timopheev
  • Andrei L. Kholkin
  • Nikolai A. SobolevEmail author
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

This chapter presents a theoretical basis of the anisotropic magnetoelectric (ME) effect in tri-layers of metglas and piezoelectric (PE) single crystals. The properties of various common PE and magnetostrictive substances are discussed, and arguments for the choice of the most appropriate materials are made. A linear description of the ME effects in terms of electric, magnetic and elastic material fields and material constants is presented. An averaging quasi-static method is used to illustrate the relation between the material constants, their anisotropy and the transversal direct ME voltage and charge coefficients. Subsequently, the aforementioned model is employed in the calculation of the maximum expected direct ME voltage coefficient for a series of tri-layered Metglas/Piezocrystal/Metglas composites as a function of the PE crystal orientation. The ME effects are shown to be strongly dependent on the crystal orientation, which supports the possibility of inducing large ME voltage coefficients in composites comprising lead-free PE single crystals such as LiNbO3, LiTaO3, α-GaPO4, α-quartz, langatate and langasite through the optimization of the crystal orientation.

Keywords

Piezoelectricity Magnetostriction Magnetoelectric effect Laminar composites 

Notes

Acknowledgments

This work was developed in the scope of the projects I3N/FSCOSD (Ref. FCT UID/CTM/50025/2013), CICECO – Aveiro Institute of Materials – POCI-01-0145-FEDER-007679 (FCT Ref. UID/CTM/50011/2013), and RECI/FIS-NAN/0183/2012 (FCOMP-01-0124-FEDER-027494) financed by national funds through the FCT/MEC and when applicable cofinanced by FEDER under the PT2020 Partnership Agreement. J.V.V. and A.A.T.  thank for the FCT grants SFRH/BD/89097/2012 and SFRH/BPD/74086/2010, respectively. N.A.S. acknowledges support by NUST “MISiS” through grant no. K3-2015-003.

References

  1. 1.
    P. Debye, Bemerkung zu einigen neuen Versuchen über einen magneto-elektrischen Richteffekt. Z. Phys. 36(4), 300–301 (1926)CrossRefGoogle Scholar
  2. 2.
    T.H. O’Dell, The Electrodynamics of Continuous Media (North-Holland, Amsterdan, 1970)Google Scholar
  3. 3.
    L.D. Landau, L.P. Pitaevskii, E. M. Lifshitz, Electrodynamics of Continuous Media. 2nd edn. vol. 8 (Course of Theoretical Physics), Butterworth-Heinemann (1984)Google Scholar
  4. 4.
    M. Fiebig, N.A. Spaldin, Current trends of the magnetoelectric effect. Eur. Phys. J. B 71(3), 293–297 (2009)CrossRefGoogle Scholar
  5. 5.
    W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442(7104), 759–765 (2006)CrossRefGoogle Scholar
  6. 6.
    C.-W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103(3), 031101–031135 (2008)CrossRefGoogle Scholar
  7. 7.
    M. Fiebig, Revival of the magnetoelectric effect. J. Phys. D Appl. Phys. 38(8), R123–R152 (2005)CrossRefGoogle Scholar
  8. 8.
    S.-W. Cheong, M. Mostovoy, Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6(1), 13–20 (2007)CrossRefGoogle Scholar
  9. 9.
    R. Ramesh, N.A. Spaldin, Multiferroics: progress and prospects in thin films. Nat. Mater 6(1), 21–29 (2007).\Google Scholar
  10. 10.
    R. Ramesh, Materials science: Emerging routes to multiferroics. Nature 461(7268), 1218–1219 (2009)CrossRefGoogle Scholar
  11. 11.
    N.A. Spaldin, M. Fiebig, The renaissance of magnetoelectric multiferroics. Science 309(5733), 391–392 (2005)CrossRefGoogle Scholar
  12. 12.
    M. Bichurin, D. Viehland, G. Srinivasan, Magnetoelectric interactions in ferromagnetic-piezoelectric layered structures: phenomena and devices. J. Electroceram. 19(4), 243–250 (2007)CrossRefGoogle Scholar
  13. 13.
    Y. Wang, J. Hu, Y. Lin, C.-W. Nan, Multiferroic magnetoelectric composite nanostructures. NPG Asia Mater. 2(2), 61–68 (2010)Google Scholar
  14. 14.
    J. Zhai, Z. Xing, S. Dong, J. Li, D. Viehland, Magnetoelectric laminate composites: an overview. J. Am. Ceram. Soc. 91(2), 351–358 (2008)CrossRefGoogle Scholar
  15. 15.
    S. Picozzi, C. Ederer, First principles studies of multiferroic materials. J. Phys.: Condens. Matter 21(30), 303201–303237 (2009)Google Scholar
  16. 16.
    M. Vopsaroiu, J. Blackburn, M.G. Cain, Emerging technologies and opportunities based on the magneto-electric effect in multiferroic composites. MRS Proc. 1161, 1161-I05-04 (2009)Google Scholar
  17. 17.
    J. Ryu, S. Priya, K. Uchino, H.-E. Kim, Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials. J. Electroceram. 8(2), 107–119 (2002)Google Scholar
  18. 18.
    R.C. Kambale, D.-Y. Jeong, J. Ryu, Current status of magnetoelectric composite thin/thick films. Adv. Cond. Matter Physics 2012, 824643 (2012)Google Scholar
  19. 19.
    G. Lawes, G. Srinivasan, Introduction to magnetoelectric coupling and multiferroic films. J. Phys. D Appl. Phys. 44(24), 243001 (2011)CrossRefGoogle Scholar
  20. 20.
    G. Srinivasan, Magnetoelectric composites. Annu. Rev. Mater. Res. 40, 153–178 (2010)CrossRefGoogle Scholar
  21. 21.
    L.W. Martin, R. Ramesh, Multiferroic and magnetoelectric heterostructures. Acta Mater. 60(6–7), 2449–2470 (2012)CrossRefGoogle Scholar
  22. 22.
    S. Priya, R. Islam, S. Dong, D. Viehland, Recent advancements in magnetoelectric particulate and laminate composites. J. Electroceram. 19(1), 149–166 (2007)CrossRefGoogle Scholar
  23. 23.
    J. Ma, J. Hu, Z. Li, C.-W. Nan, Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv. Mater. 23(9), 1062–1087 (2011)CrossRefGoogle Scholar
  24. 24.
    M. Bichurin, V. Petrov, A. Zakharov, D. Kovalenko, S.C. Yang, D. Maurya, V. Bedekar, S. Priya, Magnetoelectric interactions in lead-based and lead-free composites. Materials 4(4), 651–702 (2011)CrossRefGoogle Scholar
  25. 25.
    R. Grössinger, G.V. Duong, R. Sato-Turtelli, The physics of magnetoelectric composites. J. Mag. Mag. Mat. 320(14), 1972–1977 (2008)CrossRefGoogle Scholar
  26. 26.
    Ü. Özgür, Y. Alivov, H. Morkoç, Microwave ferrites, part 2: passive components and electrical tuning. J. Mater. Sci.: Mater. Electron. 20(10), 911–951 (2009)Google Scholar
  27. 27.
    T.H. O’Dell, The field invariants in a magneto-electric medium. Phil. Mag. 8(87), 411–418 (1963)CrossRefGoogle Scholar
  28. 28.
    M.I. Bichurin, V.M. Petrov, D.A. Filippov, G. Srinivasan, Magnetoelectric Effect in Composite Materials (em russo). Veliki Noogorod (2005)Google Scholar
  29. 29.
    W.F. Brown, Jr., R.M. Hornreich, S. Shtrikman, Upper bound on the magnetoelectric susceptibility. Phys. Rev. 168(2), 574–577 (1968)Google Scholar
  30. 30.
    N.A. Spaldin, R. Ramesh, Electric-field control of magnetism in complex oxide thin films. MRS Bull. 33, 1047–1050 (2008)CrossRefGoogle Scholar
  31. 31.
    G.A. Gehring, On the microscopic theory of the magnetoelectric effect. Ferroelectrics 161(1), 275–285 (1994)CrossRefGoogle Scholar
  32. 32.
    N.A. Hill, Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104(29), 6694–6709 (2000)CrossRefGoogle Scholar
  33. 33.
    J.-P. Rivera, A short review of the magnetoelectric effect and related experimental techniques on single phase (multi-) ferroics. Eur. Phys. J. B 71(3), 299–313 (2009)CrossRefGoogle Scholar
  34. 34.
    J.P. Rivera, On definitions, units, measurements, tensor forms of the linear magnetoelectric effect and on a new dynamic method applied to Cr-Cl boracite. Ferroelectrics 161(1), 165–180 (1994)CrossRefGoogle Scholar
  35. 35.
    H. Grimmer, The forms of tensors describing magnetic, electric and toroidal properties. Ferroelectrics 161(1), 181–189 (1994)CrossRefGoogle Scholar
  36. 36.
    R.A. Islam, S. Priya, Progress in dual (Piezoelectric-Magnetostrictive) phase magnetoelectric sintered composites. Adv. Cond. Matter Phys. 2012, 1–29 (2012)CrossRefGoogle Scholar
  37. 37.
    J.V. Suchtelen, Product properties: a new application of composite materials. Philips Res. Rep. 27(1), 28–37 (1972)Google Scholar
  38. 38.
    J.V.D. Boomgard, A.M.J.G.V. Run, J.V. Suchtelen, Piezoelectric-piezomagnetic composites with magnetoelectric effect. Ferroelectrics 14(1), 727–728 (1976)Google Scholar
  39. 39.
    C.-W. Nan, Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Phys. Rev. B 50(9), 6082–6088 (1994)Google Scholar
  40. 40.
    D.C. Lupascu, H. Wende, M. Etier, A. Nazrabi, I. Anusca, H. Trivedi, V.V. Shvartsman, J. Landers, S. Salamon, C. Schmitz-Antoniak, Measuring the magnetoelectric effect across scales. GAMM-Mitteilungen 38(1), 25–74 (2015)CrossRefGoogle Scholar
  41. 41.
    C.-W. Nan, Physics of inhomogeneous inorganic materials. Prog. Mater Sci. 37(1), 1–116 (1993)CrossRefGoogle Scholar
  42. 42.
    M.I. Bichurin, V.M. Petrov, G. Srinivasan, Theory of low-frequency magnetoelectric effects in ferromagnetic-ferroelectric layered composites. J. Appl. Phys. 92(12), 7681–7683 (2002)CrossRefGoogle Scholar
  43. 43.
    M.I. Bichurin, V.M. Petrov, G. Srinivasan, Theory of low-frequency magnetoelectric coupling in magnetostrictive-piezoelectric bilayers. Phys. Rev. B 68(5), 054402–054414 (2003)CrossRefGoogle Scholar
  44. 44.
    G.V. Duong, R. Groessinger, M. Schoenhart, D. Bueno-Basques, The lock-in technique for studying magnetoelectric effect. J. Mag. Mag. Mat. 316(2), 390–393 (2007)CrossRefGoogle Scholar
  45. 45.
    X. Zhuang, M.L.C. Sing, C. Cordier, S. Saez, C. Dolabdjian, J. Das, J. Gao, J. Li, D. Viehland, Analysis of noise in magnetoelectric thin-layer composites used as magnetic sensors. IEEE Sens. J. 11(10), 2183–2188 (2011)CrossRefGoogle Scholar
  46. 46.
    Y.J. Wang, J.Q. Gao, M.H. Li, Y. Shen, D. Hasanyan, J.F. Li, D. Viehland, A review on equivalent magnetic noise of magnetoelectric laminate sensors. Phil. Trans. R. Soc. A 372(2009), 20120455 (2014)CrossRefGoogle Scholar
  47. 47.
    Z.P. Xing, J.Y. Zhai, S.X. Dong, J.F. Li, D. Viehland, W.G. Odendaal, Modeling and detection of quasi-static nanotesla magnetic field variations using magnetoelectric laminate sensors. Meas. Sci. Technol. 19(1), 015206–015214 (2008)CrossRefGoogle Scholar
  48. 48.
    Y. Wang, D. Gray, D. Berry, J. Gao, M. Li, J. Li, D. Viehland, An extremely low equivalent magnetic noise magnetoelectric sensor. Adv. Mater. 23(35), 4111–4114 (2011)CrossRefGoogle Scholar
  49. 49.
    R. Jahns, H. Greve, E. Woltermann, E. Quandt, R.H. Knochel, Noise performance of magnetometers with resonant thin-film magnetoelectric sensors. IEEE T. Instrum. Meas. 60(8), 2995–3001 (2011)CrossRefGoogle Scholar
  50. 50.
    R.E. Newnham, D.P. Skinner, L.E. Cross, Connectivity and piezoelectric-pyroelectric composites. Mater. Res. Bull. 13(5), 525–536 (1978)CrossRefGoogle Scholar
  51. 51.
    S.N. Babu, T. Bhimasankaram, S.V. Suryanarayana, Magnetoelectric effect in metal-PZT laminates. Bull. Mater. Sci. 28(5), 419–422 (2004)CrossRefGoogle Scholar
  52. 52.
    C.P. Zhao, F. Fang, W. Yang, A dual-peak phenomenon of magnetoelectric coupling in laminated Terfenol-D/PZT/Terfenol-D composites. Smart Mater. Struct. 19(12), 125004–125010 (2010)CrossRefGoogle Scholar
  53. 53.
    J. Ryu, A.V. Carazo, K. Uchino, H.-E. Kim, Magnetoelectric properties in piezoelectric and magnetostrictive laminate composites. Jpn. J. Appl. Phys. 40(8), 4948–4951 (2001)CrossRefGoogle Scholar
  54. 54.
    IEEE Standard on Piezoelectricity. ANSI/IEEE Std 176-1987, pp. 1–74 (1988)Google Scholar
  55. 55.
    M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M.H. Garrett, D. Rytz, Y. Zhu, X. Wu, Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO_{3} crystals. Phys. Rev. B 50(9), 5941–5949 (1994)CrossRefGoogle Scholar
  56. 56.
    H. Xiao-Kang, Z. Li-Bo, W. Qiong-Shui, Z. Li-Yan, Z. Ke, L. Yu-Long, Determination of elastic, piezoelectric, and dielectric constants of an R:BaTiO3 single crystal by Brillouin scattering. Chin. Phys. B 21(6), 067801 (2012)CrossRefGoogle Scholar
  57. 57.
    R.S. Weis, T.K. Gaylord, Lithium niobate: summary of physical properties and crystal structure. Appl. Phys. A Mater. Sci. Process. 37(4), 191–203 (1985)CrossRefGoogle Scholar
  58. 58.
    P. Davulis, J.A. Kosinski, M.P. da Cunha, GaPO4 stiffness and piezoelectric constants measurements using the combined thickness excitation and lateral field technique. in International Frequency Control Symposium and Exposition, 2006 IEEE, 664–669 (2006)Google Scholar
  59. 59.
    W. Wallnöfer, P.W. Krempl, A. Asenbaum, Determination of the elastic and photoelastic constants of quartz-type GaPO4 by Brillouin scattering. Phys. Rev. B 49(15), 10075–10080 (1994)CrossRefGoogle Scholar
  60. 60.
    M. Šulca, J. Erharta, J. Noseka, Interferometric measurement of the temperature dependence of piezoelectric coefficients for PZN-8 %PT single crystals. Ferroelectrics 293(1), 283–290 (2003)CrossRefGoogle Scholar
  61. 61.
    D.-S. Paik, S.-E. Park, T.R. Shrout, W. Hackenberger, Dielectric and piezoelectric properties of perovskite materials at cryogenic temperatures. J. Mater. Sci. 34(3), 469–473 (1999)CrossRefGoogle Scholar
  62. 62.
    M. Shanthi, L.C. Lim, K.K. Rajan, J. Jin, Complete sets of elastic, dielectric, and piezoelectric properties of flux-grown [011]-poled Pb(Mg1∕3Nb2∕3)O3-(28–32)%PbTiO3 single crystals. Appl. Phys. Lett. 92(14), 142906 (2008)CrossRefGoogle Scholar
  63. 63.
    S.S. Guo, S.G. Lu, Z. Xu, X.Z. Zhao, S.W. Or, Enhanced magnetoelectric effect in Terfenol-D and flextensional cymbal laminates. Appl. Phys. Lett. 88(18), 182906–182908 (2006)CrossRefGoogle Scholar
  64. 64.
    J.G. Wan, Z.Y. Li, Y. Wang, M. Zeng, G.H. Wang, J.-M. Liu, Strong flexural resonant magnetoelectric effect in Terfenol-D∕epoxy-Pb(Zr, Ti)O3 bilayer. Appl. Phys. Lett. 86(20), 202504–202506 (2005)CrossRefGoogle Scholar
  65. 65.
    S. Dong, J.-F. Li, D. Viehland, Longitudinal and transverse magnetoelectric voltage coefficients of magnetostrictive/piezoelectric laminate composite: theory. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(10), 1253–1261 (2003)CrossRefGoogle Scholar
  66. 66.
    S. Dong, J.-F. Li, D. Viehland, Ultrahigh magnetic field sensitivity in laminates of TERFENOL-D and Pb(Mg1/3Nb2/3)O3–PbTiO3 crystals. Appl. Phys. Lett. 83(11), 2265–2267 (2003)CrossRefGoogle Scholar
  67. 67.
    S. Dong, J. Cheng, J.F. Li, D. Viehland, Enhanced magnetoelectric effects in laminate composites of Terfenol-D/Pb(Zr, Ti)O3 under resonant drive. Appl. Phys. Lett. 83(23), 4812–4814 (2003)CrossRefGoogle Scholar
  68. 68.
    J. Zhai, S. Dong, Z. Xing, J. Li, D. Viehland, Giant magnetoelectric effect in Metglas/polyvinylidene-fluoride laminates. Appl. Phys. Lett. 89(8), 083507–083509 (2006)CrossRefGoogle Scholar
  69. 69.
    Y. Yang, J. Gao, Z. Wang, M. Li, J.-F. Li, J. Das, D. Viehland, Effect of heat treatment on the properties of Metglas foils, and laminated magnetoelectric composites made thereof. Mater. Res. Bull. 46(2), 266–270 (2011)CrossRefGoogle Scholar
  70. 70.
    U. Laletsin, N. Padubnaya, G. Srinivasan, C.P. DeVreugd, Frequency dependence of magnetoelectric interactions in layered structures of ferromagnetic alloys and piezoelectric oxides. Appl. Phys. A 78(1), 33–36 (2004)CrossRefGoogle Scholar
  71. 71.
  72. 72.
    S. Dong, J. Zhai, J. Li, D. Viehland, Near-ideal magnetoelectricity in high-permeability magnetostrictive/piezofiber laminates with a (2-1) connectivity. Appl. Phys. Lett. 89(25), 252904–252906 (2006)CrossRefGoogle Scholar
  73. 73.
    G. Sreenivasulu, S.K. Mandal, S. Bandekar, V.M. Petrov, G. Srinivasan, Low-frequency and resonance magnetoelectric effects in piezoelectric and functionally stepped ferromagnetic layered composites. Phys. Rev. B 84(14), 144426–144431 (2011)CrossRefGoogle Scholar
  74. 74.
    J. Wang, Y. Zhang, J. Ma, Y. Lin, C.W. Nan, Magnetoelectric behavior of BaTiO3 films directly grown on CoFe2O4 ceramics. J. Appl. Phys. 104(1), 014101–014105 (2008)CrossRefGoogle Scholar
  75. 75.
    T. Kiyomiya, Y. Yamada, Y. Matsuo, H. Wakiwaka, Y. Torii, M. Makimura, Magnetostrictive properties of Tb-Fe and Tb-Fe-Co films. Electron. Comm. Jpn. 91(5), 49–55 (2008)CrossRefGoogle Scholar
  76. 76.
    G. Sreenivasulu, U. Laletin, V.M. Petrov, V.V. Petrov, G. Srinivasan, A permendur-piezoelectric multiferroic composite for low-noise ultrasensitive magnetic field sensors. Appl. Phys. Lett. 100(17), 173506–173510 (2012)CrossRefGoogle Scholar
  77. 77.
    M. Matsumoto, T. Kubota, M. Yokoyama, T. Okazaki, Y. Furuya, A. Makino, M. Shimada, Magnetic properties of rapidly solidified ribbon of Fe49Co49V2 and spark-plasma-sintered pellet of its powder. Mater. Trans. 51(10), 1883–1886 (2010)CrossRefGoogle Scholar
  78. 78.
    D.A. Burdin, D.V. Chashin, N.A. Ekonomov, L.Y. Fetisov, Y.K. Fetisov, G. Sreenivasulu, G. Srinivasan, Nonlinear magneto-electric effects in ferromagnetic-piezoelectric composites. J. Mag. Mag. Mat. 358–359, 98–104 (2014)CrossRefGoogle Scholar
  79. 79.
    A.E. Clark, M. Wun-Fogle, J.B. Restorff, T.A. Lograsso, J.R. Cullen, Effect of quenching on the magnetostriction on Fe < sub > 1-x </sub > Ga < sub > x</sub > (0.13x < 0.21). IEEE Trans. Magn. 37(4), 2678–2680 (2001)CrossRefGoogle Scholar
  80. 80.
    A.E. Clark, M. Wun-Fogle, J.B. Restorff, T.A. Lograsso, Magnetostrictive properties of galfenol alloys under compressive stress. Mater. Trans. 43(5), 881–886 (2002)CrossRefGoogle Scholar
  81. 81.
    S. Dong, J.-F. Li, D. Viehland, Magnetoelectric coupling, efficiency, and voltage gain effect in piezoelectric-piezomagnetic laminate composites. J. Mater. Sci. 41(1), 97–106 (2006)CrossRefGoogle Scholar
  82. 82.
    G. Srinivasan, I.V. Zavislyak, A.S. Tatarenko, Millimeter-wave magnetoelectric effects in bilayers of barium hexaferrite and lead zirconate titanate. Appl. Phys. Lett. 89(15), 152508–152510 (2006)CrossRefGoogle Scholar
  83. 83.
    G. Srinivasan, E.T. Rasmussen, J. Gallegos, R. Srinivasan, Y.I. Bokhan, V.M. Laletin, Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides. Phys. Rev. B 64(21), 214408–214413 (2001)CrossRefGoogle Scholar
  84. 84.
    G. Srinivasan, C.P. DeVreugd, C.S. Flattery, V.M. Laletsin, N. Paddubnaya, Magnetoelectric interactions in hot-pressed nickel zinc ferrite and lead zirconante titanate composites. Appl. Phys. Lett. 85(13), 2550–2552 (2004)CrossRefGoogle Scholar
  85. 85.
    G. Liu, C.-W. Nan, N. Cai, Y. Lin, Calculations of giant magnetoelectric effect in multiferroic composites of rare-earth-iron alloys and PZT by finite element method. Int. J. Solids Struct. 41(16–17), 4423–4434 (2004)CrossRefGoogle Scholar
  86. 86.
    S. Dong, J. Zhai, F. Bai, J.-F. Li, D. Viehland, Push-pull mode magnetostrictive/piezoelectric laminate composite with an enhanced magnetoelectric voltage coefficient. Appl. Phys. Lett. 87(6), 062502–062504 (2005)CrossRefGoogle Scholar
  87. 87.
    D.R. Tilley, J.F. Scott, Frequency dependence of magnetoelectric phenomena in BaMnF4. Phys. Rev. B 25(5), 3251–3260 (1982)CrossRefGoogle Scholar
  88. 88.
    M.I. Bichurin, V.M. Petrov, O.V. Ryabkov, S.V. Averkin, G. Srinivasan, Theory of magnetoelectric effects at magnetoacoustic resonance in single-crystal ferromagnetic-ferroelectric heterostructures. Phys. Rev. B 72(6), 060408–060411 (2005)CrossRefGoogle Scholar
  89. 89.
    M.I. Bichurin, V.M. Petrov, Y.V. Kiliba, G. Srinivasan, Magnetic and magnetoelectric susceptibilities of a ferroelectric/ferromagnetic composite at microwave frequencies. Phys. Rev. B 66(13), 134404–134413 (2002)CrossRefGoogle Scholar
  90. 90.
    S. Timoshenko, Vibration Problems in Engineering (D. Van Nostrand, New York, 1961)Google Scholar
  91. 91.
    U. Laletsin, N. Padubnaya, G. Srinivasan, C.P. DeVreugd, Frequency dependence of magnetoelectric interactions in layered structures of ferromagnetic alloys and piezoelectric oxides. Appl. Phys. A 78(1), 33–36 (2004)CrossRefGoogle Scholar
  92. 92.
    Y.K. Fetisov, K.E. Kamentsev, A.Y. Ostashchenko, G. Srinivasan, Wide-band magnetoelectric characterization of a ferrite-piezoelectric multilayer using a pulsed magnetic field. Solid State Commun. 132(1), 13–17 (2004)CrossRefGoogle Scholar
  93. 93.
    N. Cai, C.-W. Nan, J. Zhai, Y. Lin, Large high-frequency magnetoelectric response in laminated composites of piezoelectric ceramics, rare-earth iron alloys and polymer. Appl. Phys. Lett. 84(18), 3516–3518 (2004)CrossRefGoogle Scholar
  94. 94.
    H. Greve, E. Woltermann, H.-J. Quenzer, B. Wagner, E. Quandt, Giant magnetoelectric coefficients in (Fe90Co10)78Si12B10-AlN thin film composites. Appl. Phys. Lett. 96(18), 182501–182503 (2010)CrossRefGoogle Scholar
  95. 95.
    G. Liu, X. Li, J. Chen, H. Shi, W. Xiao, S. Dong, Colossal low-frequency resonant magnetomechanical and magnetoelectric effects in a three-phase ferromagnetic/elastic/piezoelectric composite. Appl. Phys. Lett. 101(14), 142904–142907 (2012)CrossRefGoogle Scholar
  96. 96.
    H. Greve, E. Woltermann, R. Jahns, S. Marauska, B. Wagner, R. Knöchel, M. Wuttig, E. Quandt, Low damping resonant magnetoelectric sensors. Appl. Phys. Lett. 97(15), 152503–152505 (2010)CrossRefGoogle Scholar
  97. 97.
    Y. Zhang, G. Liu, H. Shi, W. Xiao, Y. Zhu, M. Li, M. Li, J. Liu, Enhanced magnetoelectric effect in ferromagnetic–elastic–piezoelectric composites. J. Alloy. Compd. 613, 93–95 (2014)CrossRefGoogle Scholar
  98. 98.
    M. Liu, O. Obi, J. Lou, Y. Chen, Z. Cai, S. Stoute, M. Espanol, M. Lew, X. Situ, K.S. Ziemer, V.G. Harris, N.X. Sun, Giant electric field tuning of magnetic properties in multiferroic ferrite/ferroelectric heterostructures. Adv. Funct. Mater. 19(11), 1826–1831 (2009)CrossRefGoogle Scholar
  99. 99.
    S. Sherrit, B.K. Mukherjee, Characterization of Piezoelectric Materials for Transducers, arXiv (2007)Google Scholar
  100. 100.
    W.P. Mason, Physical Acoustics and the Properties of Solids (The Bell Telephone Laboratories Series) (Van Nostrand, 1958)Google Scholar
  101. 101.
    T. Ikeda, Fundamentals of Piezoelectricity (Oxford Science Publications, 1990)Google Scholar
  102. 102.
    J.W. Morris, Notes on the Thermodynamics of Solids (Chapter 15: Tensors and Tensor Properties) (Department of Materials Science and Engineering, University of Califormia, Berkeley, 2008)Google Scholar
  103. 103.
    D. Damjanovic, Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 61(9), 1267 (1998)CrossRefGoogle Scholar
  104. 104.
    R.F. Tinder, Tensor Properties of Solids: Phenomenological Development of the Tensor Properties of Crystals (Morgan & Claypool Publishers, 2008)Google Scholar
  105. 105.
    J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, 1985)Google Scholar
  106. 106.
    IRE Standards on Piezoelectric Crystals: Determination of the Elastic, Piezoelectric, and Dielectric Constants-The Electromechanical Coupling Factor, 1958. Proc. IRE 46(4), 764–778 (1958)Google Scholar
  107. 107.
    H.-Y. Kuo, A. Slinger, K. Bhattacharya, Optimization of magnetoelectricity in piezoelectric–magnetostrictive bilayers. Smart Mater. Struct. 19(12), 125010–125022 (2010)CrossRefGoogle Scholar
  108. 108.
    D.A. Burdin, D.V. Chashin, N.A. Ekonomov, L.Y. Fetisov, Y.K. Fetisov, G. Sreenivasulu, G. Srinivasan, Nonlinear magneto-electric effects in ferromagnetic-piezoelectric composites. J. Mag. Mag. Mat. 358–359, 98–104 (2014)CrossRefGoogle Scholar
  109. 109.
    Y. Benveniste, Magnetoelectric effect in fibrous composites with piezoelectric and piezomagnetic phases. Phys. Rev. B 51(22), 16424–16427 (1995)CrossRefGoogle Scholar
  110. 110.
    C.W. Nan, M. Li, J.H. Huang, Calculations of giant magnetoelectric effects in ferroic composites of rare-earth–iron alloys and ferroelectric polymers. Phys. Rev. B 63(14), 144415 (2001)CrossRefGoogle Scholar
  111. 111.
    R. Tinder, Tensor Properties of Solids (Morgan & Claypool, 2007)Google Scholar
  112. 112.
    J.A. Osborn, Demagnetizing factors of the general ellipsoid. Phys. Rev. 67(11–12), 351–357 (1945)CrossRefGoogle Scholar
  113. 113.
    A.A. Timopheev, J.V. Vidal, A.L. Kholkin, N.A. Sobolev, Direct and converse magnetoelectric effects in Metglas/LiNbO3/Metglas trilayers. J. Appl. Phys. 114(4), 044102–044108 (2013)CrossRefGoogle Scholar
  114. 114.
    Y. Wang, S.W. Or, H.L.W. Chan, X. Zhao, H. Luo, Enhanced magnetoelectric effect in longitudinal-transverse mode Terfenol-D/Pb(Mg1/3Nb2/3)O3–PbTiO3 laminate composites with optimal crystal cut. J. Appl. Phys. 103(12), 124511 (2008)CrossRefGoogle Scholar
  115. 115.
    C.-S. Park, K.-H. Cho, M.A. Arat, J. Evey, S. Priya, High magnetic field sensitivity in Pb(Zr, Ti)O3–Pb(Mg1/3Nb2/3)O3 single crystal/Terfenol-D/Metglas magnetoelectric laminate composites. J. Appl. Phys. 107(9), 094109 (2010)CrossRefGoogle Scholar
  116. 116.
    J. Lou, M. Liu, D. Reed, Y. Ren, N.X. Sun, Giant Electric Field Tuning of Magnetism in Novel Multiferroic FeGaB/Lead Zinc Niobate-Lead Titanate (PZN-PT) Heterostructures. Adv. Mater. 21(46), 4711–4715 (2009)CrossRefGoogle Scholar
  117. 117.
    H.F. Tian, T.L. Qu, L.B. Luo, J.J. Yang, S.M. Guo, H.Y. Zhang, Y.G. Zhao, J.Q. Li, Strain induced magnetoelectric coupling between magnetite and BaTiO3. Appl. Phys. Lett. 92(6), 063507–063509 (2008)CrossRefGoogle Scholar
  118. 118.
    P. Yang, K. Zhao, Y. Yin, J.G. Wan, J.S. Zhu, Magnetoelectric effect in magnetostrictive/piezoelectric laminate composite Terfenol-D∕LiNbO3 [(zxtw) − 129°∕30°]. Appl. Phys. Lett. 88(17), 172903–172905 (2006)CrossRefGoogle Scholar
  119. 119.
    J.V. Vidal, A.A. Timopheev, A.L. Kholkin, N.A. Sobolev, Anisotropy of the magnetoelectric effect in tri-layered composites based on single-crystalline piezoelectrics. Vacuum, 1–7Google Scholar
  120. 120.
    G. Sreenivasulu, V.M. Petrov, L.Y. Fetisov, Y.K. Fetisov, G. Srinivasan, Magnetoelectric interactions in layered composites of piezoelectric quartz and magnetostrictive alloys. Phys. Rev. B 86(21), 214405–214411 (2012)CrossRefGoogle Scholar
  121. 121.
    R. Viswan, D. Gray, Y. Wang, Y. Li, D. Berry, J. Li, D. Viehland, Strong magnetoelectric coupling in highly oriented ZnO films deposited on Metglas substrates. Phys. Status Solidi-R 5(10–11), 391–393 (2011)CrossRefGoogle Scholar
  122. 122.
    G. Sreenivasulu, L.Y. Fetisov, Y.K. Fetisov, G. Srinivasan, Piezoelectric single crystal langatate and ferromagnetic composites: Studies on low-frequency and resonance magnetoelectric effects. Appl. Phys. Lett. 100(5), 052901–052904 (2012)CrossRefGoogle Scholar
  123. 123.
    G. Sreenivasulu, P. Qu, E. Piskulich, V.M. Petrov, Y.K. Fetisov, A.P. Nosov, H. Qu, G. Srinivasan, Shear strain mediated magneto-electric effects in composites of piezoelectric lanthanum gallium silicate or tantalate and ferromagnetic alloys. App. Phys. Lett. 105(3), 032409–032412 (2014)CrossRefGoogle Scholar
  124. 124.
    F. Fang, C. Zhao, W. Yang, Thickness effects on magnetoelectric coupling for Metglas/PZT/Metglas laminates. Sci. China Phys. Mech. Astron. 54(4), 581–585 (2011)CrossRefGoogle Scholar
  125. 125.
    D. Hasanyan, J. Gao, Y. Wang, R. Viswan, Y.S.M. Li, J. Li, D. Viehland, Theoretical and experimental investigation of magnetoelectric effect for bending-tension coupled modes in magnetostrictive-piezoelectric layered composites. J. Appl. Phys. 112(1), 013908–013918 (2012)CrossRefGoogle Scholar
  126. 126.
    Y. Wang, D. Hasanyan, M. Li, J. Gao, J. Li, D. Viehland, H. Luo, Theoretical model for geometry-dependent magnetoelectric effect in magnetostrictive/piezoelectric composites. J. Appl. Phys. 111(12), 124513–124518 (2012)CrossRefGoogle Scholar
  127. 127.
  128. 128.
    R.T. Smith, F.S. Welsh, Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate. J. Appl. Phys. 42(6), 2219–2230 (1971)CrossRefGoogle Scholar
  129. 129.
    A. Balatto, Basic Material Quartz and Related Innovations. Springer Series in Materials Science, 114, 9–35 (2008)Google Scholar
  130. 130.
    J. Kushibiki, I. Takanaga, S. Nishiyama, Accurate measurements of the acoustical physical constants of synthetic/spl alpha/-quartz for SAW devices. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(1), 125–135 (2002)CrossRefGoogle Scholar
  131. 131.
    P.M. Davulis, M.P.D. Cunha, A full set of langatate high-temperature acoustic wave constants: elastic, piezoelectric, dielectric constants up to 900 °C. IEEE Trans. Ultrason., Ferroelectr., Freq. Control. 60(4), 824–33 (2013)Google Scholar
  132. 132.
    Y.K. Fetisov, D.A. Burdin, D.V. Chashin, N.A. Ekonomov, High-Sensitivity Wideband Magnetic Field Sensor Using Nonlinear Resonance Magnetoelectric Effect. Sens. J., IEEE 14(7), 2252–2256 (2014)Google Scholar
  133. 133.
    M. Adachi, T. Kimura, W. Miyamoto, Z. Chen, A. Kawabata, Dielectric, elastic and piezoelectric properties of La3Ga5SiO14 (LANGASITE) single crystals. J. Korean Phys. Soc. 32, S1274–S1277 (1998)Google Scholar
  134. 134.
    R. Tarumi, H. Nitta, H. Ogi, M. Hirao, Low-temperature elastic constants and piezoelectric coefficients of langasite (La3Ga5SiO14). Philos. Mag. 91(16), 2140–2153 (2011)CrossRefGoogle Scholar
  135. 135.
    A. Sotnikov, H. Schmidt, M. Weihnacht, E. Smirnova, T. Chemekova, Y. Makarov, Elastic and piezoelectric properties of AlN and LiAlO2 single crystals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(4), 808–811 (2010)CrossRefGoogle Scholar
  136. 136.
    G. Bu, D. Ciplys, M. Shur, L.J. Schowalter, S. Schujman, R. Gaska, Electromechanical coupling coefficient for surface acoustic waves in single-crystal bulk aluminum nitride. Appl. Phys. Lett. 84(23), 4611–4613 (2004)CrossRefGoogle Scholar
  137. 137.
  138. 138.
    R.T. Smith, F.S. Welsh, Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate. J. Appl. Phys. 42(6), 2219–2230 (1971)CrossRefGoogle Scholar
  139. 139.
    A.W. Warner, M. Onoe, G.A. Coquin, Determination of elastic and piezoelectric constants for crystals in class (3 m). J. Acoust. Soc. America 42(6), 1223–1231 (1967)CrossRefGoogle Scholar
  140. 140.
    Technical Publication TP-226 - Properties of Piezoelectricity Ceramics, Morgan Electro CeramicsGoogle Scholar
  141. 141.
    R. Zhang, B. Jiang, W. Cao, Single-domain properties of 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 single crystals under electric field bias. Appl. Phys. Lett. 82(5), 787–789 (2003)CrossRefGoogle Scholar
  142. 142.
    R. Zhang, B. Jiang, W. Cao, Elastic, piezoelectric, and dielectric properties of multidomain 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 single crystals. J. Appl. Phys. 90(7), 3471–3475 (2001)CrossRefGoogle Scholar
  143. 143.
    C. He, J. Weiping, W. Feifei, K. Zhu, Q. Jinhao, Full tensorial elastic, piezoelectric, and dielectric properties characterization of [011]-poled PZN-9 %PT single crystal. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(6), 1127–1130 (2011)CrossRefGoogle Scholar
  144. 144.
    R. Zhang, B. Jiang, W. Jiang, W. Cao, Complete set of properties of 0.92Pb(Zn1/3Nb2/3)O3–0.08PbTiO3 single crystal with engineered domains. Mater. Lett. 57(7), 1305–1308 (2003)CrossRefGoogle Scholar
  145. 145.
    H.-M. Zhou, Y.-H. Zhou, X.-J. Zheng, Q. Ye, J. Wei, A general 3-D nonlinear magnetostrictive constitutive model for soft ferromagnetic materials. J. Mag. Mag. Mat. 321(4), 281–290 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • João V. Vidal
    • 1
  • Andrey A. Timopheev
    • 1
  • Andrei L. Kholkin
    • 2
    • 3
  • Nikolai A. Sobolev
    • 1
    • 4
    Email author
  1. 1.Departamento de Física & I3NUniversidade de AveiroAveiroPortugal
  2. 2.Departamento de Física & CICECOUniversidade de AveiroAveiroPortugal
  3. 3.Institute of Natural SciencesUral Federal UniversityEkaterinburgRussia
  4. 4.National University of Science and Technology “MISiS”MoscowRussia

Personalised recommendations