Advertisement

A Hybrid Piezoelectric and Electrostatic Vibration Energy Harvester

  • H. Madinei
  • H. Haddad Khodaparast
  • S. Adhikari
  • M. I. Friswell
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)

Abstract

Micro Electro Mechanical Systems for vibration energy harvesting have become popular over recent years. At these small length scales electrostatic forces become significant, and this paper proposes a hybrid cantilever beam harvester with piezoelectric and electrostatic transducers for narrow band base excitation. One approach would be to just combine the output from the different transducers; however, this would require accurate tuning of the mechanical system to the excitation frequency to ensure the beam is resonant. In contrast, this paper uses the applied DC voltage to the electrostatic electrodes as a control parameter to change the resonant frequency of the harvester to ensure resonance as the excitation frequency varies. The electrostatic forces are highly non-linear, leading to multiple solutions and jump phenomena. Hence, this paper analyses the non-linear response and proposes control solutions to ensure the response remains on the higher amplitude solution. The approach is demonstrated by simulating the response of a typical device using Euler Bernoulli beam theory and a Galerkin solution procedure.

Keywords

MEMS Energy harvesting Electrostatic forces Nonlinear 

Notes

Acknowledgement

Hadi Madinei acknowledges the financial support from the Swansea University through the award of the Zienkiewicz scholarship.

References

  1. 1.
    Borowiec, M., Litak, G., Friswell, M.I., Adhikari, S.: Energy harvesting in a nonlinear cantilever piezoelastic beam system excited by random vertical vibrations. Int. J. Struct. Stab. Dyn. 14(8), 1440018 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Vijayan, K., Friswell, M.I., Haddad Khodaparast, H., Adhikari, S.: Non-linear energy harvesting from coupled impacting beams. Int. J. Mech. Sci. 96–97, 101–109 (2015)CrossRefGoogle Scholar
  3. 3.
    Zorlu, Ö., Topal, E.T., Külah, H.: A vibration-based electromagnetic energy harvester using mechanical frequency up-conversion method. IEEE Sensors J. 11(2), 481–488 (2011)CrossRefGoogle Scholar
  4. 4.
    Galchev, T., Aktakka, E.E., Najafi, K.: A piezoelectric parametric frequency increased generator for harvesting low-frequency vibrations. J. Microelectromech. Syst. 21(6), 1311–1320 (2012)CrossRefGoogle Scholar
  5. 5.
    Hoffmann, D., Folkmer, B., Manoli, Y.: Fabrication, characterization and modelling of electrostatic micro-generators. J. Micromech. Microeng. 19(9), 094001 (2009)CrossRefGoogle Scholar
  6. 6.
    Jeon, Y.B., Sood, R., Jeong, J.H., Kim, S.G.: MEMS power generator with transverse mode thin film PZT. Sensors Actuators A Phys. 122, 16–22 (2005)CrossRefGoogle Scholar
  7. 7.
    Choi, W.J., Jeon, Y., Jeong, J.H., Sood, R., Kim, S.G.: Energy harvesting MEMS device based on thin film piezoelectric cantilevers. J. Electroceram. 17, 543–548 (2006)CrossRefGoogle Scholar
  8. 8.
    Renaud, M., Karakaya, K., Sterken, T., Fiorini, P., van Hoof, C., Puers, R.: Fabrication, modelling and characterization of MEMS piezoelectric vibration harvesters. Sensors Actuators A Phys. 145–146, 380–386 (2008)CrossRefGoogle Scholar
  9. 9.
    Shen, D., Park, J., Ajitsaria, J., Choe, S., Wikle, H., Kim, D.: The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting. J. Micromech. Microeng. 18, 055017 (2008)CrossRefGoogle Scholar
  10. 10.
    Youngsman, J.M., Luedeman, T., Morris, D.J., Anderson, M.J., Bahr, D.F.: A model for an extensional mode resonator used as a frequency-adjustable vibration energy harvester. J. Sound Vib. 329(3), 277–288 (2010)CrossRefGoogle Scholar
  11. 11.
    Marzencki, M., Defosseux, M., Basrour, S.: MEMS vibration energy harvesting devices with passive resonance frequency adaptation capability. J. Microelectromech. Syst. 18(6), 1444–1453 (2009)CrossRefGoogle Scholar
  12. 12.
    Zhu, D., Roberts, S., Tudor, M.J., Beeby, S.P.: Design and experimental characterization of a tunable vibration-based electromagnetic micro-generator. Sensors Actuators A 158, 284–293 (2010)CrossRefGoogle Scholar
  13. 13.
    Challa, V.R., Prasad, M.G., Fisher, F.T.: Towards an autonomous self-tuning vibration energy harvesting device for wireless sensor network applications. Smart Mater. Struct. 20, 025004 (2011)CrossRefGoogle Scholar
  14. 14.
    Miller, L.M., Pillatsch, P., Halvorsen, E., Wright, P.K., Yeatman, E.M., Holmes, A.S.: Experimental passive self-tuning behavior of a beam resonator with sliding proof mass. J. Sound Vib. 332(26), 7142–7152 (2013)CrossRefGoogle Scholar
  15. 15.
    Madinei, H., Haddad Khodaparast, H., Adhikari, S., Friswell, M.I., Fazeli, M.: Adaptive tuned piezoelectric MEMS vibration energy harvester using an electrostatic device. Eur. Phys. J. Special Topics. 224(14), 2703–2717 (2015)Google Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2016

Authors and Affiliations

  • H. Madinei
    • 1
  • H. Haddad Khodaparast
    • 1
  • S. Adhikari
    • 1
  • M. I. Friswell
    • 1
  1. 1.College of EngineeringSwansea UniversitySwanseaUK

Personalised recommendations