Wire-guided Droplet Manipulation for Molecular Biology



Wire-guided droplet manipulation (WDM) is a simple method of manipulating liquid droplets in a hydrophobic environment to conduct experiments, reactions, and assays. In WDM, a wire (or needle tip) manipulates microliter-sized liquid droplets within an immiscible liquid or on a hydrophobic surface. The attributes of this format for liquid handling address some of the challenges facing the use of conventional techniques. Specifically, WDM provides solutions for development of automated, sample-to-answer, point-of-care systems with potential applications in medicine, life science research, forensics, veterinary diagnostics, and disease control.

The widespread applicability of this technique is due to its inherent simplicity stemming from the attractive force between the droplet and the wire. The physics of this interaction will be explained in this chapter. WDM can be applied to standard protocols and is easily reprogrammable for different liquid handling applications. Dilution, mixing, centrifugation, and thermocycling have all been automated by WDM (You and Yoon, J Biol Eng 6:15, 2012). If desired, the principles of droplet manipulation can be easily integrated into the common scientific automation strategy, using commercially available robotic pipetting systems. WDM is automatable, reprogrammable, easy to use, and robust. These are essential features of rapid, all-in-one, sample-to-answer systems to be used at the point-of-care.

The applications of WDM within molecular biology that have been demonstrated include DNA extraction (lysing, precipitation, washing, and rehydration), nanoparticle surface deposition for fabrication of a protein nanoarray, immunoassay, PCR thermocycling, and real-time PCR.


Wire-guided droplet manipulation Electrowetting Superhydrophobic Sessile droplet Contact angle Work of adhesion Electrospinning Pendant droplet Polymerase chain reaction (PCR) Rapid thermocycling Sample preparation PCR inhibition Protein nanoarray Particle immunoassay Endpoint detection Real-time quantification Interfacial effects Water-in-oil emulsion 


  1. 1.
    You DJ, Yoon J-Y (2012) Droplet centrifugation, droplet DNA extraction, and rapid droplet thermocycling for simpler and faster PCR assay using wire-guided manipulations. J Biol Eng 6:15CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Schneider T, Kreutz J, Chiu DT (2013) The potential impact of droplet microfluidics in biology. Anal Chem 85:3476–3482CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Zec H, Shin DJ, Wang T-H (2014) Novel droplet platforms for the detection of disease biomarkers. Expert Rev Mol Diagn 14:787–801CrossRefPubMedGoogle Scholar
  4. 4.
    Cho SK, Moon H, Kim C-J (2003) Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J Microelectromech Syst 12:70–80CrossRefGoogle Scholar
  5. 5.
    Barbulovic-Nad I, Au SH, Wheeler AR (2010) A microfluidic platform for complete mammalian cell culture. Lab Chip 10:1536–1542CrossRefPubMedGoogle Scholar
  6. 6.
    Egatz-Gómez A, Melle S, García AA, Lindsay SA, Márquez M, Domínguez-García P, Rubio MA, Picraux ST, Taraci JL, Clement T, Yang D, Hayes MA, Gust D (2006) Discrete magnetic microfluidics. Appl Phys Lett 89:034106CrossRefGoogle Scholar
  7. 7.
    Ohashi T, Kuyama H, Hanafusa N, Togawa Y (2007) A simple device using magnetic transportation for droplet-based PCR. Biomed Microdevices 9:695–702CrossRefPubMedGoogle Scholar
  8. 8.
    Zhang Y, Wang T-H (2013) Full-range magnetic manipulation of droplets via surface energy traps enables complex bioassays. Adv Mater 25:2903–2908CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Zhang Y, Shin DJ, Wang T-H (2013) Serial dilution via surface energy trap-assisted magnetic droplet manipulation. Lab Chip 13:4827–4831CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Nicolini AM, Fronczek CF, Yoon J-Y (2015) Droplet-based immunoassay on a “sticky” nanofibrous surface for multiplexed and dual detection of bacteria using smartphones. Biosens Bioelectron 67:560–569CrossRefPubMedGoogle Scholar
  11. 11.
    Park S-Y, Kalim S, Callahan C, Teitell MA, Chiou EPY (2009) A light-induced dielectrophoretic droplet manipulation platform. Lab Chip 9:3228–3235CrossRefPubMedGoogle Scholar
  12. 12.
    He M, Edgar JS, Jeffries GDM, Lorenz RM, Shelby JP, Chiu DT (2005) Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets. Anal Chem 77:5214–5219Google Scholar
  13. 13.
    Huang CJ, Fang WF, Ke MS, Chou HYE, Yang JT (2014) A biocompatible open-surface droplet manipulation platform for detection of multi-nucleotide polymorphism. Lab Chip 14:2057–2062CrossRefPubMedGoogle Scholar
  14. 14.
    Daniel S, Chaudhury MK (2005) Vibration-actuated drop motion on surfaces for batch microfluidic processes. Langmuir 4:4240–4248CrossRefGoogle Scholar
  15. 15.
    Darhuber AA, Valentino JP, Davis JM, Troian SM, Wagner S (2003) Microfluidic actuation by modulation of surface stresses. Appl Phys Lett 82:657CrossRefGoogle Scholar
  16. 16.
    Yoon J-Y, You DJ (2008) Backscattering particle immunoassays in wire-guide droplet manipulations. J Biol Eng 2:15CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    You DJ, Tran PL, Kwon H-J, Patel D, Yoon J-Y (2011) Very quick reverse transcription polymerase chain reaction for detecting 2009 H1N1 influenza A using wire-guide droplet manipulations. Faraday Discuss 149:159–170CrossRefPubMedGoogle Scholar
  18. 18.
    Harshman DK, Reyes R, Park TS, You DJ, Song J-Y, Yoon J-Y (2014) Enhanced nucleic acid amplification with blood in situ by wire-guided droplet manipulation (WDM). Biosens Bioelectron 53:167–174CrossRefPubMedGoogle Scholar
  19. 19.
    de Gennes PG (1985) Wetting: statics and dynamics. Rev Mod Phys 57:827–863CrossRefGoogle Scholar
  20. 20.
    Song B, Springer J (1996) Determination of interfacial tension from the profile of a pendant drop using computer-aided image processing. J Colloid Interface Sci 184:64–76PubMedGoogle Scholar
  21. 21.
    Tate T (1864) On the magnitude of a drop of liquid formed under different circumstances. Philos Mag Ser 4(181):176–180Google Scholar
  22. 22.
    Yoon J-Y, Garrell RL (2003) Preventing biomolecular adsorption in electrowetting-based biofluidic chips. Anal Chem 75:5097–5102CrossRefGoogle Scholar
  23. 23.
    Bartzoka V, Brook MA, McDermott MR (1998) Protein–silicone interactions: how compatible are the two species? Langmuir 14:1887–1891CrossRefGoogle Scholar
  24. 24.
    Tran PL, Gamboa JR, You DJ, Yoon J-Y (2010) FRET detection of Octamer-4 on a protein nanoarray made by size-dependent self-assembly. Anal Bioanal Chem 398:759–768CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 51:263–273CrossRefPubMedGoogle Scholar
  26. 26.
    Chien A, Edgar DB, Trela JM (1976) Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J Bacteriol 127:1550–1557PubMedPubMedCentralGoogle Scholar
  27. 27.
    Brock T, Freeze H (1969) Thermus aquaticus gen. n. and sp. n., a non-sporulating extreme thermophile. J Bacteriol 98:289–297PubMedPubMedCentralGoogle Scholar
  28. 28.
    Zhang C, Xing D (2007) Miniaturized PCR chips for nucleic acid amplification and analysis: latest advances and future trends. Nucleic Acids Res 35:4223–4237CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Roper MG, Easley CJ, Landers JP (2015) Advances in polymerase chain reaction on microfluidic chips. Anal Chem 77:3887–3893CrossRefGoogle Scholar
  30. 30.
    Farrar JS, Wittwer CT (2015) Extreme PCR: efficient and specific DNA amplification in 15–60 seconds. Clin Chem 61:145–153CrossRefPubMedGoogle Scholar
  31. 31.
    Wittwer CT, Chris G, Garling J (1990) Minimizing the time required for DNA amplification by efficient heat transfer to small samples. Anal Biochem 331:328–331CrossRefGoogle Scholar
  32. 32.
    Innis MA, Myambo KB, Gelfand DH, Brow MAD (1988) DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain reaction-amplified DNA. Proc Natl Acad Sci U S A 85:9436–9440CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Wilson IG (1997) Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol 63:3741–3751PubMedPubMedCentralGoogle Scholar
  34. 34.
    Rossen L, Norskov P, Hoimstrom K, Rasmussen OF (1992) Inhibition of PCR by components of food samples, microbial diagnostic assays and DNA-extraction solutions. Int J Food Microbiol 17:37–45CrossRefPubMedGoogle Scholar
  35. 35.
    Ra P, Al-soud WA, Jo LJ, Rådstro P (2001) Purification and characterization of PCR-inhibitory components in blood cells. J Clin Microbiol 39:485–493CrossRefGoogle Scholar
  36. 36.
    Katzman M (1993) Use of oil overlays in “oil-free” PCR technology. Biotechniques 14:36–40PubMedGoogle Scholar
  37. 37.
    Kreader CA (1996) Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Appl Environ Microbiol 62:1102–1106PubMedPubMedCentralGoogle Scholar
  38. 38.
    Harshman DK, Rao BM, McLain JE, Watts GS, Yoon J-Y (2015) Innovative qPCR using interfacial effects to enable low threshold cycle detection and inhibition. Sci Adv 1:e1400061CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Becker A, Reith A, Kadenbach B (1996) A quantitative method of determining initial amounts of DNA by polymerase chain reaction cycle titration using digital imaging and a novel DNA stain. Anal Biochem 237:204–207CrossRefPubMedGoogle Scholar
  40. 40.
    Higuchi R, Dollinger G, Walsh PS, Griffith R (1992) Simultaneous amplification and detection of specific DNA sequences. Nat Biotechnol 10:413–417CrossRefGoogle Scholar
  41. 41.
    Wittwer CT, Herrmann MG, Moss AA, Rasmussen RP (1997) Continuous fluorescent monitoring of rapid cycle DNA amplification. Biotechniques 22:130–138PubMedGoogle Scholar
  42. 42.
    Gašparič MB, Tengs T, La Paz JL, Holst-Jensen A, Pla M, Esteve T, Žek J, Gruden K (2010) Comparison of nine different real-time PCR chemistries for qualitative and quantitative applications in GMO detection. Anal Bioanal Chem 396:2023–2029CrossRefGoogle Scholar
  43. 43.
    Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14:303–308CrossRefPubMedGoogle Scholar
  44. 44.
    Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Genome Res 6:986–994CrossRefPubMedGoogle Scholar
  45. 45.
    Dragan AI, Pavlovic R, McGivney JB, Casas-Finet JR, Bishop ES, Strouse RJ, Schenerman MA, Geddes CD (2012) SYBR Green I: fluorescence properties and interaction with DNA. J Fluoresc 22:1189–1199CrossRefPubMedGoogle Scholar
  46. 46.
    Angus SV, Cho S, Harshman DK, Song J-Y, Yoon J-Y (2015) A portable, shock-proof, surface-heated droplet PCR system for Escherichia coli detection. Biosens Bioelectron 74:360–368CrossRefPubMedGoogle Scholar
  47. 47.
    Rutledge RG, Côté C (2003) Mathematics of quantitative kinetic PCR and the application of standard curves. Nucleic Acids Res 31:e93CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Biomedical Engineering Graduate Interdisciplinary Program and Department of Agricultural and Biosystems EngineeringThe University of ArizonaTucsonUSA

Personalised recommendations