Reachability in Resource-Bounded Reaction Systems

  • Alberto Dennunzio
  • Enrico Formenti
  • Luca Manzoni
  • Antonio E. Porreca
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9618)


Reaction systems, a formalism describing biochemical reactions in terms of sets of reactants, inhibitors, and products, are known to have a PSPACE-complete configuration reachability problem. We show that the complexity of the problem remains unchanged even for some classes of resource-bounded reaction systems, where we disallow either inhibitors or reactants. We also prove that the complexity decreases to NP in the specific case of inhibitorless reaction systems using only one reactant per reaction.


Unconventional models of computation Natural computing Reaction systems Discrete dynamical systems Reachability 


  1. 1.
    Brijder, R., Ehrenfeucht, A., Main, M., Rozenberg, G.: A tour of reaction systems. Int. J. Found. Comput. Sci. 22(7), 1499–1517 (2011)CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Brijder, R., Ehrenfeucht, A., Rozenberg, G.: Reaction systems with duration. In: Kelemen, J., Kelemenová, A. (eds.) Computation, Cooperation, and Life. LNCS, vol. 6610, pp. 191–202. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Dennunzio, A., Formenti, E., Manzoni, L., Porreca, A.E.: Ancestors, descendants, and gardens of Eden in reaction systems. Theor. Comput. Sci. 608, 16–26 (2015)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Dudley, U.: Elementary Number Theory. W.H. Freeman and Company, New York (1969)MATHGoogle Scholar
  5. 5.
    Ehrenfeucht, A., Rozenberg, G.: Basic notions of reaction systems. In: Calude, C.S., Calude, E., Dinneen, M.J. (eds.) DLT 2004. LNCS, vol. 3340, pp. 27–29. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Ehrenfeucht, A., Rozenberg, G.: Reaction systems. Fundamenta Informaticae 75, 263–280 (2007)MathSciNetMATHGoogle Scholar
  7. 7.
    Formenti, E., Manzoni, L., Porreca, A.E.: Cycles and global attractors of reaction systems. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS, vol. 8614, pp. 114–125. Springer, Heidelberg (2014)Google Scholar
  8. 8.
    Formenti, E., Manzoni, L., Porreca, A.E.: Fixed points and attractors of reaction systems. In: Beckmann, A., Csuhaj-Varjú, E., Meer, K. (eds.) CiE 2014. LNCS, vol. 8493, pp. 194–203. Springer, Heidelberg (2014)Google Scholar
  9. 9.
    Formenti, E., Manzoni, L., Porreca, A.E.: On the complexity of occurrence and convergence problems in reaction systems. Nat. Comput. 14(1), 185–191 (2015)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Granas, A., Dugundji, J.: Fixed point theory. Springer Monographs on Mathematics. Springer, New York (2003)CrossRefMATHGoogle Scholar
  11. 11.
    Manzoni, L., Poças, D., Porreca, A.E.: Simple reaction systems and their classification. Int. J. Found. Comput. Sci. 25(4), 441–457 (2014)CrossRefMATHGoogle Scholar
  12. 12.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Boston (1993)Google Scholar
  13. 13.
    Salomaa, A.: Minimal and almost minimal reaction systems. Nat. Comput. 12(3), 369–376 (2013)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Tošić, P.T.: On the complexity of enumerating possible dynamics of sparsely connected Boolean network automata with simple update rules. In: Fatès, N., Kari, J., Worsch, T. (eds.) Discrete Mathematics and Theoretical Computer Science Proceedings, DMTCS, Automata 2010–16th International Workshop on CA and DCS, 14–16 June 2010, Nancy, France, pp. 125–144 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Alberto Dennunzio
    • 1
  • Enrico Formenti
    • 2
  • Luca Manzoni
    • 1
  • Antonio E. Porreca
    • 1
  1. 1.Dipartimento di Informatica, Sistemistica e ComunicazioneUniversità Degli Studi di Milano-BicoccaMilanoItaly
  2. 2.University of Nice Sophia Antipolis, CNRS, I3S, UMR 7271Sophia AntipolisFrance

Personalised recommendations