Restricted Turing Machines and Language Recognition

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9618)


In 1965 Hennie proved that one-tape deterministic Turing machines working in linear time are equivalent to finite automata, namely they characterize regular languages. This result has been improved in different directions, by obtaining optimal lower bounds for the time that one-tape deterministic and nondeterministic Turing machines need to recognize nonregular languages. On the other hand, in 1964 Kuroda showed that one-tape Turing machines that are not allowed to use any extra space, besides the part of the tape which initially contains the input, namely linear bounded automata, recognize exactly context-sensitive languages. In 1967 Hibbard proved that for each integer \(d\ge 2\), one-tape Turing machines that are allowed to rewrite each tape cell only in the first d visits are equivalent to pushdown automata. This gives a characterization of the class of context-free languages in terms of restricted Turing machines. We discuss these and other related models, by presenting an overview of some fundamental results related to them. Descriptional complexity aspects are also considered.


Models of computation Turing machines Descriptional complexity Chomsky hierarchy Context-free languages 


  1. 1.
    Alberts, M.: Space complexity of alternating Turing machines. In: Budach, L. (ed.) FCT. LNCS, vol. 199, pp. 1–7. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  2. 2.
    Bertoni, A., Mereghetti, C., Pighizzini, G.: An optimal lower bound for nonregular languages. Inf. Process. Lett. 50(6), 289–292 (1994). Corrigendum. ibid. 52(6), 339CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Chomsky, N., Schützenberger, M.: The algebraic theory of context-free languages. In: Braffort, P., Hirschberg, D. (eds.) Computer Programming and Formal Systems, Studies in Logic and the Foundations of Mathematics, vol. 35, pp. 118–161. Elsevier, Amsterdam (1963)CrossRefGoogle Scholar
  4. 4.
    Gajser, D.: Verifying time complexity of Turing machines. Theor. Comput. Sci. 600, 86–97 (2015)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Geffert, V.: Bridging across the log(n) space frontier. Inf. Comput. 142(2), 127–158 (1998)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Ginsburg, S., Rice, H.G.: Two families of languages related to ALGOL. J. ACM 9(3), 350–371 (1962)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Hartmanis, J.: Computational complexity of one-tape Turing machine computations. J. ACM 15(2), 325–339 (1968)CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Hennie, F.C.: One-tape, off-line Turing machine computations. Inf. Control 8(6), 553–578 (1965)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Hibbard, T.N.: A generalization of context-free determinism. Inf. Control 11(1/2), 196–238 (1967)CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Hopcroft, J.E., Ullman, J.D.: Some results on tape-bounded Turing machines. J. ACM 16(1), 168–177 (1969)CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Jancar, P., Mráz, F., Plátek, M.: Forgetting automata and context-free languages. Acta Inf. 33(5), 409–420 (1996)CrossRefGoogle Scholar
  12. 12.
    Kobayashi, K.: On the structure of one-tape nondeterministic Turing machine time hierarchy. Theor. Comput. Sci. 40, 175–193 (1985)CrossRefMATHGoogle Scholar
  13. 13.
    Kuroda, S.: Classes of languages and linear-bounded automata. Inf. Control 7(2), 207–223 (1964)CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    Kutrib, M., Pighizzini, G., Wendlandt, M.: Descriptional complexity of limited automata (submitted)Google Scholar
  15. 15.
    Kutrib, M., Wendlandt, M.: On simulation cost of unary limited automata. In: Shallit, J., Okhotin, A. (eds.) DCFS 2015. LNCS, vol. 9118, pp. 153–164. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  16. 16.
    Lewis II., P.M., Stearns, R.E., Hartmanis, J.: Memory bounds for recognition of context-free and context-sensitive languages. In: FOCS, pp. 191–202. IEEE (1965)Google Scholar
  17. 17.
    Mereghetti, C.: Testing the descriptional power of small Turing machines on nonregular language acceptance. Int. J. Found. Comput. Sci. 19(4), 827–843 (2008)CrossRefMathSciNetMATHGoogle Scholar
  18. 18.
    Michel, P.: An NP-complete language accepted in linear time by a one-tape Turing machine. Theor. Comput. Sci. 85(1), 205–212 (1991)CrossRefMATHGoogle Scholar
  19. 19.
    Michel, P.: A survey of space complexity. Theor. Comput. Sci. 101(1), 99–132 (1992)CrossRefMATHGoogle Scholar
  20. 20.
    Mill, J.R.: Linear bounded automata. WADD Tech. Note, pp. 60–165, Wright Patterson Air Force Base, Ohio (1960)Google Scholar
  21. 21.
    Peckel, J.: On a deterministic subclass of context-free languages. In: Gruska, J. (ed.) Mathematical Foundations of Computer Science 1977. LNCS, vol. 53, pp. 430–434. Springer, Heidelberg (1977)CrossRefGoogle Scholar
  22. 22.
    Pighizzini, G.: Nondeterministic one-tape off-line Turing machines. J. Automata, Lang. Combinatorics 14(1), 107–124 (2009). arxiv:0905.1271 MathSciNetMATHGoogle Scholar
  23. 23.
    Pighizzini, G.: Guest column: one-tape Turing machine variants and language recognition. SIGACT News 46(3), 37–55 (2015). arxiv:1507.08582 CrossRefMathSciNetGoogle Scholar
  24. 24.
    Pighizzini, G.: Strongly limited automata. Fundam. Inform. (to appear). A preliminaryversion appeared In: Bensch, S., Freund, R., Otto, F. (eds.) Proceedings of the Sixth Workshop on Non-Classical Models for Automata and Applications - NCMA 2014, 28–29 July 2014, Kassel, Germany, vol. 304, pp. 191–206. Österreichische Computer Gesellschaft (2014). books@ocg.atGoogle Scholar
  25. 25.
    Pighizzini, G., Pisoni, A.: Limited automata and regular languages. Int. J. Found. Comput. Sci. 25(7), 897–916 (2014)CrossRefMathSciNetMATHGoogle Scholar
  26. 26.
    Pighizzini, G., Pisoni, A.: Limited automata and context-free languages. Fundam. Inform. 136(1–2), 157–176 (2015)MathSciNetGoogle Scholar
  27. 27.
    Průša, D.: Weight-Reducing hennie machines and their descriptional complexity. In: Dediu, A.-H., Martín-Vide, C., Sierra-Rodríguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 553–564. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  28. 28.
    Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res. Dev. 3(2), 114–125 (1959)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Stearns, R.E., Hartmanis, J., Lewis II., P.M.: Hierarchies of memory limited computations. In: FOCS, pp. 179–190. IEEE (1965)Google Scholar
  30. 30.
    Szepietowski, A.: Turing Machines with Sublogarithmic Space. LNCS, vol. 843. Springer, Heidelberg (1994)MATHGoogle Scholar
  31. 31.
    Tadaki, K., Yamakami, T., Lin, J.C.H.: Theory of one-tape linear-time Turing machines. Theor. Comput. Sci. 411(1), 22–43 (2010)CrossRefMathSciNetMATHGoogle Scholar
  32. 32.
    Trakhtenbrot, B.A.: Turing machine computations with logarithmic delay (in russian). Algebra I Logica 3, 33–48 (1964)MATHGoogle Scholar
  33. 33.
    Wagner, K.W., Wechsung, G.: Computational Complexity. D. Reidel Publishing Company, Dordrecht (1986)Google Scholar
  34. 34.
    Wechsung, G.: Characterization of some classes of context-free languages in terms of complexity classes. In: Becvár, J. (ed.) Mathematical Foundations of Computer Science 1975. LNCS, vol. 32, pp. 457–461. Springer, Heidelberg (1975)Google Scholar
  35. 35.
    Wechsung, G., Brandstädt, A.: A relation between space, return and dual return complexities. Theor. Comput. Sci. 9, 127–140 (1979)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Dipartimento di InformaticaUniversità degli Studi di MilanoMilanoItaly

Personalised recommendations