Advertisement

Tangles and Connectivity in Graphs

  • Martin Grohe
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9618)

Abstract

This paper is a short introduction to the theory of tangles, both in graphs and general connectivity systems. An emphasis is put on the correspondence between tangles of order k and k-connected components. In particular, we prove that there is a one-to-one correspondence between the triconnected components of a graph and its tangles of order 3.

Keywords

Vertex Cover Tree Decomposition Connected Subgraph Connectivity Function Oriented Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

I thank Pascal Schweitzer and Konstantinos Stavropoulos for helpful comments on a earlier version of the paper.

References

  1. 1.
    Carmesin, J., Diestel, R., Hamann, M., Hundertmark, F.: Canonical tree-decompositions of finite graphs I. Existence and algorithms (2013). arxiv:1305.4668v3
  2. 2.
    Carmesin, J., Diestel, R., Hundertmark, F., Stein, M.: Connectivity and tree structure in finite graphs. Combinatorica 34(1), 11–46 (2014)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Demaine, E., Hajiaghayi, M., Kawarabayashi, K.: Algorithmic graph minor theory: decomposition, approximation, and coloring. In: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, pp. 637–646 (2005)Google Scholar
  4. 4.
    Diestel, R.: Graph Theory, 4th edn. Springer, New York (2010)CrossRefGoogle Scholar
  5. 5.
    Geelen, J., Gerards, B., Whittle, G.: Tangles, tree-decompositions and grids in matroids. J. Comb. Theory Ser. B 99(4), 657–667 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Grohe, M.: Quasi-4-connected components (in preparation)Google Scholar
  7. 7.
    Grohe, M., Kawarabayashi, K., Reed, B.: A simple algorithm for the graph minor decomposition - logic meets structural graph theory. In: Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 414–431 (2013)Google Scholar
  8. 8.
    Grohe, M., Marx, D.: Structure theorem and isomorphism test for graphs with excluded topological subgraphs. In: Proceedings of the 44th ACM Symposium on Theory of Computing (2012)Google Scholar
  9. 9.
    Grohe, M., Marx, D.: Structure theorem and isomorphism test for graphs with excluded topological subgraphs. SIAM J. Comput. 44(1), 114–159 (2015)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Grohe, M., Schweitzer, P.: Computing with tangles. In: Proceedings of the 47th ACM Symposium on Theory of Computing, pp. 683–692 (2015)Google Scholar
  11. 11.
    Grohe, M., Schweitzer, P.: Isomorphism testing for graphs of bounded rank width. In: Proceedings of the 55th Annual IEEE Symposium on Foundations of Computer Science (2015)Google Scholar
  12. 12.
    Hopcroft, J.E., Tarjan, R.: Dividing a graph into triconnected components. SIAM J. Comput. 2(2), 135–158 (1973)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Hundertmark, F.: Profiles. An algebraic approach to combinatorial connectivity (2011). arxiv:1110.6207v1
  14. 14.
    Kawarabayashi, K.I., Wollan, P.: A simpler algorithm and shorter proof for the graph minor decomposition. In: Proceedings of the 43rd ACM Symposium on Theory of Computing, pp. 451–458 (2011)Google Scholar
  15. 15.
    MacLane, S.: A structural characterization of planar combinatorial graphs. Duke Math. J. 3(3), 460–472 (1937)CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Oum, S.I.: Rank-width and vertex-minors. J. Comb. Theory Ser. B 95, 79–100 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Oum, S.I., Seymour, P.: Approximating clique-width and branch-width. J. Comb. Theory Ser. B 96, 514–528 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Oxley, J.: Matroid Theory, 2nd edn. Cambridge University Press, Cambridge (2011)CrossRefzbMATHGoogle Scholar
  19. 19.
    Reed, B.: Tree width and tangles: a new connectivity measure and some applications. In: Bailey, R. (ed.) Surveys in Combinatorics. LMS, vol. 241, pp. 87–162. Cambridge University Press, Cambridge (1997)Google Scholar
  20. 20.
    Robertson, N., Seymour, P.: Graph minors I-XXIII. J. Comb. Theory Ser. B (1982–2012)Google Scholar
  21. 21.
    Robertson, N., Seymour, P.: Graph minors X. Obstructions to tree-decomposition. J. Comb. Theory Ser. B 52, 153–190 (1991)CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Robertson, N., Seymour, P.: Graph minors XVI. Excluding a non-planar graph. J. Comb. Theory Ser. B 77, 1–27 (1999)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Seymour, P., Thomas, R.: Graph searching and a min-max theorem for tree-width. J. Comb. Theory Ser. B 58, 22–33 (1993)CrossRefMathSciNetzbMATHGoogle Scholar
  24. 24.
    Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)CrossRefMathSciNetzbMATHGoogle Scholar
  25. 25.
    Tutte, W.: Graph Theory. Addison-Wesley, Reading (1984)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.RWTH Aachen UniversityAachenGermany

Personalised recommendations