Non-Zero Sum Games for Reactive Synthesis

  • Romain Brenguier
  • Lorenzo Clemente
  • Paul Hunter
  • Guillermo A. Pérez
  • Mickael Randour
  • Jean-François RaskinEmail author
  • Ocan Sankur
  • Mathieu Sassolas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9618)


In this invited contribution, we summarize new solution concepts useful for the synthesis of reactive systems that we have introduced in several recent publications. These solution concepts are developed in the context of non-zero sum games played on graphs. They are part of the contributions obtained in the inVEST project funded by the European Research Council.


Nash Equilibrium Markov Decision Process Winning Strategy Strategy Profile Admissible Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aminof, B., Kupferman, O., Lampert, R.: Reasoning about online algorithms with weighted automata. ACM Trans. Algorithms 6(2), 28:1–28:36 (2010). doi: 10.1145/1721837.1721844. CrossRefMathSciNetGoogle Scholar
  2. 2.
    Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge (2008)zbMATHGoogle Scholar
  3. 3.
    Berwanger, D.: Admissibility in infinite games. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 188–199. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Bloem, R., Ehlers, R., Jacobs, S., Könighofer, R.: How to handle assumptions in synthesis. In: Proceedings of SYNT. EPTCS, vol. 157, pp. 34–50 (2014)Google Scholar
  5. 5.
    Brandenburger, A., Friedenberg, A., Keisler, H.J.: Admissibility in games. Econometrica 76(2), 307–352 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Brázdil, T., Chatterjee, K., Forejt, V., Kucera, A.: Trading performance for stability in Markov decision processes. In: Proceedings of LICS, pp. 331–340. IEEE (2013)Google Scholar
  7. 7.
    Brenguier, R., Raskin, J.-F., Sankur, O.: Assume-admissible synthesis. In: Proceedings of CONCUR. LIPIcs, vol. 42, pp. 100–113. Schloss Dagstuhl-LZI (2015)Google Scholar
  8. 8.
    Brenguier, R., Raskin, J.-F., Sassolas, M.: The complexity of admissibility in omega-regular games. In: Proceedings of CSL-LICS, pp. 23:1–23:10. ACM (2014)Google Scholar
  9. 9.
    Brihaye, T., Bruyère, V., Meunier, N., Raskin, J.-F.: Weak subgame perfect equilibria and their application to quantitative reachability. In: Proceedings of CSL. LIPIcs, vol. 41, pp. 504–518. Schloss Dagstuhl - LZI (2015)Google Scholar
  10. 10.
    Brim, L., Chaloupka, J., Doyen, L., Gentilini, R., Raskin, J.-F.: Faster algorithms for mean-payoff games. Formal Methods Syst. Des. 38(2), 97–118 (2011)CrossRefzbMATHGoogle Scholar
  11. 11.
    Bruyère, V., Filiot, E., Randour, M., Raskin, J.-F.: Expectations or guarantees? I want it all! A crossroad between games and MDPs. In: Proceedings of SR. EPTCS, vol. 146, pp. 1–8 (2014)Google Scholar
  12. 12.
    Bruyère, V., Filiot, E., Randour, M., Raskin, J.-F.: Meet your expectations with guarantees: beyond worst-case synthesis in quantitative games. In: Proceedings of STACS. LIPIcs, vol. 25, pp. 199–213. Schloss Dagstuhl - LZI (2014)Google Scholar
  13. 13.
    Bruyère, V., Meunier, N., Raskin, J.-F.: Secure equilibria in weighted games. In: Proceedings of CSL-LICS, pp. 26:1–26:26. ACM (2014)Google Scholar
  14. 14.
    Chatterjee, K., Doyen, L., Filiot, E., Raskin, J.-F.: Doomsday equilibria for omega-regular games. In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 78–97. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  15. 15.
    Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. ACM Trans. Comput. Logic 11(4), 23:1–23:38 (2010). doi: 10.1145/1805950.1805953. MathSciNetGoogle Scholar
  16. 16.
    Chatterjee, K., Doyen, L., Randour, M., Raskin, J.-F.: Looking at mean-payoff and total-payoff through windows. Inf. Comput. 242, 25–52 (2015)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Chatterjee, K., Henzinger, T.A.: Assume-guarantee synthesis. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 261–275. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Chatterjee, K., Henzinger, T.A., Jurdziński, M.: Games with secure equilibria. Theoret. Comput. Sci. 365(1), 67–82 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  19. 19.
    Chatterjee, K., Henzinger, T.A., Piterman, N.: Strategy logic. Inf. Comput. 208(6), 677–693 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using branching-time temporal logic. In: Kozen, D. (ed.) Logics of Programs. LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1981)CrossRefGoogle Scholar
  21. 21.
    Clemente, L., Raskin, J.-F.: Multidimensional beyond worst-case and almost-sure problems for mean-payoff objectives. In: Proceedings of LICS, pp. 257–268. IEEE (2015)Google Scholar
  22. 22.
    Colcombet, T.: Forms of determinism for automata. In: Proceedings of STACS. LIPIcs, vol. 14, pp. 1–23. Schloss Dagstuhl - LZI (2012)Google Scholar
  23. 23.
    Damm, W., Finkbeiner, B.: Does it pay to extend the perimeter of a world model? In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 12–26. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  24. 24.
    Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Int. J. Game Theory 8, 109–113 (1979)CrossRefMathSciNetzbMATHGoogle Scholar
  25. 25.
    Faella, M.: Admissible strategies in infinite games over graphs. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 307–318. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  26. 26.
    Filar, J., Vrieze, K.: Competitive Markov decision processes. Springer, New York (1997)zbMATHGoogle Scholar
  27. 27.
    Filar, J.A., Krass, D., Ross, K.W.: Percentile performance criteria for limiting average Markov decision processes. Trans. Autom. Control 40, 2–10 (1995)CrossRefMathSciNetzbMATHGoogle Scholar
  28. 28.
    Filiot, E., Le Gall, T., Raskin, J.-F.: Iterated regret minimization in game graphs. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 342–354. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  29. 29.
    Fisman, D., Kupferman, O., Lustig, Y.: Rational synthesis. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 190–204. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  30. 30.
    Halpern, J.Y., Pass, R.: Iterated regret minimization: a new solution concept. Games Econ. Behav. 74(1), 184–207 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  31. 31.
    Henzinger, T.A., Piterman, N.: Solving games without determinization. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 395–410. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  32. 32.
    Hunter, P., Pérez, G.A., Raskin, J.-F.: Reactive synthesis without regret. In: Proceedings of CONCUR. LIPIcs, vol. 42, pp. 114–127. Schloss Dagstuhl - LZI (2015)Google Scholar
  33. 33.
    Khachiyan, L., Boros, E., Borys, K., Elbassioni, K., Gurvich, V., Rudolf, G., Zhao, J.: On short paths interdiction problems: total and node-wise limited interdiction. Theory Comput. Syst. 43, 204–233 (2008)CrossRefMathSciNetGoogle Scholar
  34. 34.
    Kupferman, O., Perelli, G., Vardi, M.Y.: Synthesis with rational environments. In: Bulling, N. (ed.) EUMAS 2014. LNCS, vol. 8953, pp. 219–235. Springer, Heidelberg (2015)Google Scholar
  35. 35.
    Mannor, S., Tsitsiklis, J.: Mean-variance optimization in Markov decision processes. In: Proceedings of ICML, pp. 177–184. Omnipress (2011)Google Scholar
  36. 36.
    Mogavero, F., Murano, A., Vardi, M.Y.: Reasoning about strategies. In: Proceedings of FSTTCS, LIPIcs, vol. 8, pp. 133–144. Schloss Dagstuhl - LZI (2010)Google Scholar
  37. 37.
    Nash, J.: Equilibrium points in \(n\)-person games. PNAS 36, 48–49 (1950)CrossRefMathSciNetzbMATHGoogle Scholar
  38. 38.
    Puterman, M.: Markov decision processes: discrete stochastic dynamic programming, 1st edn. Wiley, New York (1994)CrossRefzbMATHGoogle Scholar
  39. 39.
    Queille, J.-P., Sifakis, J.: Specification and verification of concurrent systems in CESAR. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) International Symposium on Programming. LNCS, vol. 137, pp. 337–351. Springer, Heidelberg (1982)CrossRefGoogle Scholar
  40. 40.
    Randour, M., Raskin, J.-F., Sankur, O.: Percentile queries in multi-dimensional Markov decision processes. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 123–139. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  41. 41.
    Randour, M., Raskin, J.-F., Sankur, O.: Variations on the stochastic shortest path problem. In: D’Souza, D., Lal, A., Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol. 8931, pp. 1–18. Springer, Heidelberg (2015)Google Scholar
  42. 42.
    Ummels, M.: Rational behaviour and strategy construction in infinite multiplayer games. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 212–223. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  43. 43.
    Vardi, M.Y.: Automatic verification of probabilistic concurrent finite state programs. In: Proceedings of FOCS, pp. 327–338. IEEE (1985)Google Scholar
  44. 44.
    Wu, C., Lin, Y.: Minimizing risk models in Markov decision processes with policies depending on target values. J. Math. Anal. Appl. 231(1), 47–67 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  45. 45.
    Zinkevich, M., Johanson, M., Bowling, M., Piccione, C.: Regret minimization in games with incomplete information. In: Proceedings of NIPS, pp. 905–912 (2008)Google Scholar
  46. 46.
    Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theoret. Comput. Sci. 158(1), 343–359 (1996)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Romain Brenguier
    • 1
  • Lorenzo Clemente
    • 2
  • Paul Hunter
    • 3
  • Guillermo A. Pérez
    • 3
  • Mickael Randour
    • 3
  • Jean-François Raskin
    • 3
    Email author
  • Ocan Sankur
    • 4
  • Mathieu Sassolas
    • 5
  1. 1.University of OxfordOxfordUK
  2. 2.University of WarsawWarsawPoland
  3. 3.Université Libre de BruxellesBrusselsBelgium
  4. 4.CNRS, IRISARennesFrance
  5. 5.Université Paris-Est – Créteil, LACLCréteilFrance

Personalised recommendations