Stereoscopic Motion Magnification in Minimally-Invasive Robotic Prostatectomy

  • A. Jonathan McLeod
  • John S. H. Baxter
  • Uditha Jayarathne
  • Stephen Pautler
  • Terry M. Peters
  • Xiongbiao Luo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9515)


The removal of the prostate is a common treatment option for localized prostate cancer. Robotic prostatectomy uses endoscopic cameras to provide a stereoscopic view of the surgical scene to the surgeon. Often, this surgical scene is difficult to interpret because of variants in anatomy and some critical structures such as the neurovascular bundles alongside the prostate, are affected by variations in size and shape of the prostate. The objective of this article is to develop a real-time stereoscopic video processing framework to improve the perceptibly of the surgical scene, using Eulerian Motion Magnification to exaggerate the subtle pulsatile behavior of the neurovascular bundles. This framework has been validated on both digital phantoms and retrospective analysis of robotic prostatectomy video.


Robotic prostatectomy Motion magnification Stereoscopic video processing 



We would like to thank Elvis Chen for his invaluable discussion and editing. Funding for this project was received from Intuitive Surgical, Canadian Institute for Health Research and Canadian Foundation for Innovation. Graduate student funding for Jonathan McLeod was received from the Vanier Canadian Graduate Scholarship program.


  1. 1.
    Amir-Khalili, A., Hamarneh, G., Peyrat, J.M., Abinahed, J., Al-Alao, O., Al-Ansari, A., Abugharbieh, R.: Automatic segmentation of occluded vasculature via pulsatile motion analysis in endoscopic robot-assisted partial nephrectomy video. Med. Image Anal. 25(1), 103–110 (2015)CrossRefGoogle Scholar
  2. 2.
    Anderson, J.E., Chang, D.C., Parsons, J.K., Talamini, M.A.: The first national examination of outcomes and trends in robotic surgery in the United States. J. Am. Coll. Surg. 215(1), 107–114 (2012)CrossRefGoogle Scholar
  3. 3.
    Delto, J.C., Wayne, G., Yanes, R., Nieder, A.M., Bhandari, A.: Reducing robotic prostatectomy costs by minimizing instrumentation. J. Endourol. 29(5), 556–560 (2015)CrossRefGoogle Scholar
  4. 4.
    Kowalczyk, K.J., Levy, J.M., Caplan, C.F., Lipsitz, S.R., Yu, H.Y., Gu, X., Hu, J.C.: Temporal national trends of minimally invasive and retropubic radical prostatectomy outcomes from 2003 to 2007: results from the 100% medicare sample. Eur. Urol. 61(4), 803–809 (2012)CrossRefGoogle Scholar
  5. 5.
    Liu, J.J., Maxwell, B.G., Panousis, P., Chung, B.I.: Perioperative outcomes for laparoscopic and robotic compared with open prostatectomy using the national surgical quality improvement program (nsqip) database. Urology 82(3), 579–583 (2013)CrossRefGoogle Scholar
  6. 6.
    Manny, T.B., Patel, M., Hemal, A.K.: Fluorescence-enhanced robotic radical prostatectomy using real-time lymphangiography and tissue marking with percutaneous injection of unconjugated indocyanine green: the initial clinical experience in 50 patients. Eur. Urol. 65(6), 1162–1168 (2014)CrossRefGoogle Scholar
  7. 7.
    McLeod, A.J., Baxter, J.S., Ameri, G., Ganapathy, S., Peters, T.M., Chen, E.C.: Detection and visualization of dural pulsation for spine needle interventions. Int. J. Comput. Assist. Radiol. Surg. 10, 947–958 (2015)CrossRefGoogle Scholar
  8. 8.
    McLeod, A.J., Baxter, J.S., de Ribaupierre, S., Peters, T.M.: Motion magnification for endoscopic surgery. In: SPIE Medical Imaging, pp. 90360C–90360C. International Society for Optics and Photonics (2014)Google Scholar
  9. 9.
    Sanda, M.G., Dunn, R.L., Michalski, J., Sandler, H.M., Northouse, L., Hembroff, L., Lin, X., Greenfield, T.K., Litwin, M.S., Saigal, C.S., et al.: Quality of life and satisfaction with outcome among prostate-cancer survivors. N. Engl. J. Med. 358(12), 1250–1261 (2008)CrossRefGoogle Scholar
  10. 10.
    Siegel, R., Ma, J., Zou, Z., Jemal, A.: Cancer statistics, 2014. CA Cancer J. Clin. 64(1), 9–29 (2014)CrossRefGoogle Scholar
  11. 11.
    Smith, J.O.: Introduction to Digital Filters: With Audio Applications. W3K Publishing (2007)Google Scholar
  12. 12.
    Tewari, A., Peabody, J.O., Fischer, M., Sarle, R., Vallancien, G., Delmas, V., Hassan, M., Bansal, A., Hemal, A.K., Guillonneau, B., et al.: An operative and anatomic study to help in nerve sparing during laparoscopic and robotic radical prostatectomy. Eur. Urol. 43(5), 444–454 (2003)CrossRefGoogle Scholar
  13. 13.
    Wadhwa, N., Rubinstein, M., Durand, F., Freeman, W.T.: Phase-based video motion processing. ACM Trans. Graph. (TOG) 32(4), 80 (2013)CrossRefzbMATHGoogle Scholar
  14. 14.
    Wadhwa, N., Rubinstein, M., Durand, F., Freeman, W.T.: Riesz pyramids for fast phase-based video magnification. In: 2014 IEEE International Conference on Computational Photography (ICCP), pp. 1–10. IEEE (2014)Google Scholar
  15. 15.
    Wu, H.Y., Rubinstein, M., Shih, E., Guttag, J.V., Durand, F., Freeman, W.T.: Eulerian video magnification for revealing subtle changes in the world. ACM Trans. Graph. 31(4), 65 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • A. Jonathan McLeod
    • 1
    • 2
  • John S. H. Baxter
    • 1
    • 2
  • Uditha Jayarathne
    • 1
    • 2
  • Stephen Pautler
    • 3
  • Terry M. Peters
    • 1
    • 2
  • Xiongbiao Luo
    • 1
  1. 1.Robarts Research InstituteWestern UniversityLondonCanada
  2. 2.Biomedical Engineering Graduate ProgramWestern UniversityLondonCanada
  3. 3.Division of Urology, Department of SurgeryWestern UniversityLondonCanada

Personalised recommendations