Restoring Corrupted Cross-Recurrence Plots Using Matrix Completion: Application on the Time-Synchronization Between Market and Volatility Indexes

Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 180)


The success of a trading strategy can be significantly enhanced by tracking accurately the implied volatility changes, which refers to the amount of uncertainty or risk about the degree of changes in a market index. This fosters the need for accurate estimation of the time-synchronization profile between a given market index and its associated volatility index. In this chapter, we advance existing solutions, which are based widely on the typical correlation, for identifying this temporal interdependence. To this end, cross-recurrence plot (CRP) analysis is exploited for extracting the underlying dynamics of a given market and volatility indexes pair, along with their time-synchronization profile. However, CRPs of degraded quality, for instance due to missing information, may yield a completely erroneous estimation of this profile. To overcome this drawback, a restoration stage based on the concept of matrix completion is applied on a corrupted CRP prior to the estimation of the time-synchronization relationship. A performance evaluation on the S&P 500 index and its associated VIX volatility index reveals the superior capability of our proposed approach in restoring accurately their CRP and subsequently estimating a temporal relation between the two indexes even when \(80\,\%\) of CRP values are missing.


  1. 1.
    R. Mantegna, H. Stanley, An Introduction to Econophysics (Cambridge University Press, 2000)Google Scholar
  2. 2.
    N. Johnson, P. Jefferies, P. Ming Hui, Financial Market Complexity (Oxford University Press, 2003)Google Scholar
  3. 3.
    Y. Kim, C. Nelson, J. Fin. Econ. 12(2), 307 (2014). doi: 10.1093/jjfinec/nbt014 Google Scholar
  4. 4.
    K. French, G. Schwert, R. Stambaugh, J. Fin. Econ. 19(1), 3 (1987). doi: 10.1016/0304-405X(87)90026-2 CrossRefGoogle Scholar
  5. 5.
    P. Giot, J. Portf. Manag. 31(3), 92 (2005). doi: 10.3905/jpm.2005.500363 CrossRefGoogle Scholar
  6. 6.
    B. Menachem, J. Shu, J. Zhang, J. Fut. Mark. 30(9), 809 (2010). doi: 10.1002/fut.20448 Google Scholar
  7. 7.
    I. Vodenska, W.J. Chambers, Understanding the Relationship between VIX and the S&P 500 Index Volatility, in Proceedings of the 26th Australasian Finance and Banking Conference (2013)Google Scholar
  8. 8.
    R.E. Whaley, J. Portf. Manag. 35(3), 98 (2009). doi: 10.3905/JPM.2009.35.3.098 CrossRefGoogle Scholar
  9. 9.
    B. Awartani, V. Corradi, Int. J. Forecast. 21(1), 167 (2005). doi: 10.1016/j.ijforecast.2004.08.003 CrossRefGoogle Scholar
  10. 10.
    S.-M. Chiang, The Relationships between Implied Volatility Indexes and Spot Indexes, in Proceedings of the International Conference on Asia Pacific Business Innovation and Technology Management, Procedia—Social and Behavioral Sciences, vol. 57, p. 231 (2012)Google Scholar
  11. 11.
    S. Ercetin, S. Banerjee, Chaos and Complexity Theory in World Politics (IGI Global, 2014)Google Scholar
  12. 12.
    B.S. Lee, J. Bank. Finance 34(6), 1257 (2010). doi: 10.1016/j.jbankfin.2009.11.023 CrossRefGoogle Scholar
  13. 13.
    B.S. Lee, D. Ryu, Econ. E-journal 7, (2013). doi: 10.5018/economics-ejournal.ja.2013-3
  14. 14.
    J. Eckmann, K. Oliffson, D. Ruelle, Europhys. Lett. 4(9), 973 (1987). doi: 10.1209/0295-5075/4/9/004 ADSCrossRefGoogle Scholar
  15. 15.
    J. Zbilut, C. Webber, J. Appl. Physiol. 76(2), 965 (1994)Google Scholar
  16. 16.
    J. Zbilut, C. Webber, Phys. Lett. A 171(3–4), 199 (1992). doi: 10.1016/0375-9601(92)90426-M
  17. 17.
    L. Trulla, A. Giuliani, J. Zbilut, C. Webber, Phys. Lett. A 223(4), 255 (1996). doi: 10.1016/S0375-9601(96)00741-4 ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    J. Gao, Phys. Rev. Lett. 83(16), 3178 (1999). doi: 10.1103/PhysRevLett.83.3178 ADSCrossRefGoogle Scholar
  19. 19.
    N. Marwan, N. Wessel, U. Meyerfeldt, A. Schirdewan, J. Kurths, Phys. Rev. E 66(2), 026702 (2002). doi: 10.1103/PhysRevE.66.026702 ADSCrossRefGoogle Scholar
  20. 20.
    N. Marwan, J. Kurths, Phys. Lett. A 302(5–6), 299 (2002). doi: 10.1016/S0375-9601(02)01170-2 ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    A. Antoniou, C. Vorlow, Neur. Net. World 10, 131 (2000)Google Scholar
  22. 22.
    F. Strozzi, J.-M. Zaldivar, J. Zbilut, Phys. A 376, 487 (2007). doi: 10.1016/j.physa.2006.10.020 CrossRefGoogle Scholar
  23. 23.
    A. Fabretti, M. Ausloos, Int. J. Mod. Phys. C 16(5), 671 (2005). doi: 10.1142/S0129183105007492 ADSCrossRefGoogle Scholar
  24. 24.
    P. Crowley, Eur. Phys. J. Sp. Top. 164(1), 67 (2008). doi: 10.1140/epjst/e2008-00835-3 CrossRefGoogle Scholar
  25. 25.
    N. Bigdeli, K. Afshar, Phys. A 388, 1577 (2009). doi: 10.1016/j.physa.2009.01.003 CrossRefGoogle Scholar
  26. 26.
    K. Guhathakurta, N. Marwan, B. Bhattacharya, A. Chowdhury, Understanding the Interrelationship Between Commodity and Stock Indices Daily Movement Using ACE and Recurrence Analysis, Translational Recurrences (Springer International Publishing, 2014). doi: 10.1007/978-3-319-09531-8_13
  27. 27.
    P. Addo, Coupling Direction of the European Banking and Insurance Sectors using Inter-System Recurrence Networks, Documents de travail du Centre d’Economie de la Sorbonne (2015). ISSN: 1955-611X.2015Google Scholar
  28. 28.
    E. Candès, B. Recht, Found. Comput. Math. 9(6), 717 (2009). doi: 10.1007/s10208-009-9045-5
  29. 29.
    R. Whaley, J. Deriv. 1(1), 71 (1993). doi: 10.3905/jod.1993.407868
  30. 30.
    J. Noh, R. Engle, A. Kane, J. Deriv. 2(1), 17 (1994). doi: 10.3905/jod.1994.407901 CrossRefGoogle Scholar
  31. 31.
    W.-Y. Lee, C.-X. Jiang, D. Indro, J. Bank. Finance 26(12), 2277 (2002). doi: 10.1016/S0378-4266(01)00202-3 CrossRefGoogle Scholar
  32. 32.
    Standard & Poor’s: S&P 500 Factsheet. Accessed 30 Nov 2015 (
  33. 33.
    CBOE: The VIX White Paper, Chicago Board Options Exchange. Accessed 30 Nov 2015
  34. 34.
    R. Whaley, J. Portf. Manag. 26(3), 12 (2000). doi: 10.3905/jpm.2000.319728 CrossRefGoogle Scholar
  35. 35.
    J. Iwanski, E. Bradley, Chaos 8(4), 861 (1998). doi: 10.1063/1.166372 ADSCrossRefGoogle Scholar
  36. 36.
    N. Marwan, M. Thiel, N.R. Nowaczyk, Nonlinear Process. Geophys. 9, 325 (2002). doi: 10.5194/npg-9-325-2002 ADSCrossRefGoogle Scholar
  37. 37.
    P. Crowley, A. Schultz, A New Approach to Analyzing Convergence and Synchronicity in Growth and Business Cycles: Cross Recurrence Plots and Quantification Analysis, Bank of Finland Research Discussion Papers 16 (2010)Google Scholar
  38. 38.
    P.M. Addo, M. Billio, D. Guégan, North Am J. Econ. Fin. 26, 416 (2013). doi: 10.1016/j.najef.2013.02.014
  39. 39.
    M.B. Kennel, R. Brown, H.D. Abarbanel, Phys. Rev. A 45, 3403 (1992). doi: 10.1103/PhysRevA.45.3403 ADSCrossRefGoogle Scholar
  40. 40.
    R. Little, D. Rubin, Statistical Analysis with Missing Data, 2nd edn. (Wiley, 2002)Google Scholar
  41. 41.
    E. Candès, T. Tao, IEEE Trans. Inform. Theory 56(5), 2053 (2010). doi: 10.1109/TIT.2010.2044061 MathSciNetCrossRefGoogle Scholar
  42. 42.
    J.-F. Cai, E. Candès, Z. Shen, SIAM J. Optim. 20(4), 1956 (2010). doi: 10.1137/080738970 MathSciNetCrossRefGoogle Scholar
  43. 43.
    C. Peiying, W. Yuandi, A New Fourth-Order Equation Model for Image Inpainting, in Proceedings of 6th International Conference on Fuzzy Systems and Knowledge Discovery, Shanghai, China, 14–16 Aug 2009Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.EONOS Investment TechnologiesParisFrance
  2. 2.ADVENIS Investment ManagersParisFrance
  3. 3.AXIANTA ResearchNicosiaCyprus

Personalised recommendations