Cloud Elasticity: A Survey

  • Athanasios NaskosEmail author
  • Anastasios Gounaris
  • Spyros Sioutas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9511)


Cloud elasticity is a unique feature of cloud environments, which allows for the on demand (de-)provisioning or reconfiguration of the resources of cloud deployments. The efficient handling of cloud elasticity is a challenge that attracts the interest of the research community. This work constitutes a survey of research efforts towards this direction. The main contribution of this work is an up-to-date review of the latest elasticity handling approaches and a detailed classification scheme, focusing on the elasticity decision making techniques. Finally, we discuss various research challenges and directions of further research, regarding all phases of cloud elasticity, which can be deemed as a special case of autonomic behavior of computing systems (This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thales. Investing in knowledge society through the European Social Fund.”).


Service Level Agreement Cloud Provider Exponential Weight Move Average Cloud Infrastructure Autonomic Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Apache hadoop. Accessed 11 Jun 2015
  2. 2.
    Apache jmeter: Graphical server performance testing tool. Accessed 11 Jun 2015
  3. 3.
    Cloudstone. Accessed 11 Jun 2015
  4. 4.
    Faban: Performance workload creation and execution framework. Accessed 11 Jun 2015
  5. 5.
    Fio: A micro-benchmarking tool. Accessed 11 Jun 2015
  6. 6.
    Hadoop mapreduce dependability, performance benchmarking. Accessed 11 Jun 2015
  7. 7.
    Mediawiki: Web hosting benchmark. Accessed 11 Jun 2015
  8. 8.
    Msr cambridge traces. Accessed 11 Jun 2015
  9. 9.
    Olio web 2.0 toolkit. Accessed 11 Jun 2015
  10. 10.
    The r project for statistical computing. Accessed 11 Jun 2015
  11. 11.
    Rubis: Rice university bidding system. Accessed 11 Jun 2015
  12. 12.
    Specjenterprise benchmark system. Accessed 11 Jun 2015
  13. 13.
    Tcp. Accessed 11 Jun 2015
  14. 14.
    Wikibench: Web hosting benchmark. Accessed 11 Jun 2015
  15. 15.
    Al-Shishtawy, A., Vlassov, V.: Elastman: elasticity manager for elastic key-value stores in the cloud. In: ACM Cloud and Autonomic Computing Conference, CAC 2013, Miami, FL, USA, 5–9 August 2013, p. 7 (2013)Google Scholar
  16. 16.
    Ali-Eldin, A., Tordsson, J., Elmroth, E.: An adaptive hybrid elasticity controller for cloud infrastructures. In: 2012 IEEE Network Operations and Management Symposium (NOMS), pp. 204–212 (2012)Google Scholar
  17. 17.
    Almeida Morais, F., Vilar Brasileiro, F., Vigolvino Lopes, R., Araujo Santos, R., Satterfield, W., Rosa, L.: Autoflex: service agnostic auto-scaling framework for IaaS deployment models. In: 2013 13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp. 42–49 (2013)Google Scholar
  18. 18.
    Ashraf, A., Byholm, B., Porres, I.: Cramp: cost-efficient resource allocation for multiple web applications with proactive scaling. In: 2012 IEEE 4th International Conference on Cloud Computing Technology and Science (CloudCom), pp. 581–586 (2012)Google Scholar
  19. 19.
    Bairavasundaram, L.N., Soundararajan, G., Mathur, V., Voruganti, K., Srinivasan, K.: Responding rapidly to service level violations using virtual appliances. SIGOPS Oper. Syst. Rev. 46(3), 32–40 (2012)CrossRefGoogle Scholar
  20. 20.
    Barker, S.K., Chi, Y., Hacigümüs, H., Shenoy, P.J., Cecchet, E.: Shuttledb: database-aware elasticity in the cloud. In: 11th International Conference on Autonomic Computing, ICAC 2014, Philadelphia, PA, USA, 18–20 June 2014, pp. 33–43 (2014)Google Scholar
  21. 21.
    Beernaert, L., Matos, M., Vilaça, R., Oliveira, R.: Automatic elasticity in openstack. In: Proceedings of the Workshop on Secure and Dependable Middleware for Cloud Monitoring and Management, p. 2 (2012)Google Scholar
  22. 22.
    Cámara, J., Moreno, G.A., Garlan, D.: Stochastic game analysis and latency awareness for proactive self-adaptation. In: SEAMS, pp. 155–164 (2014)Google Scholar
  23. 23.
    Chalkiadaki, M., Magoutis, K.: Managing service performance in the cassandra distributed storage system. In: IEEE 5th International Conference on Cloud Computing Technology and Science, CloudCom 2013, Bristol, UK, 2–5 December 2013, vol. 1, pp. 64–71 (2013)Google Scholar
  24. 24.
    Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking cloud serving systems with YCSB. In: Proceedings of the 1st ACM Symposium on Cloud Computing, pp. 143–154 (2010)Google Scholar
  25. 25.
    Copil, G., Moldovan, D., Truong, H.L., Dustdar, S.: On controlling cloud services elasticity in heterogeneous clouds. In: 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing (UCC), pp. 573–578 (2014)Google Scholar
  26. 26.
    Coutinho, E.F., de Carvalho Sousa, F.R., Rego, P.A.L., Gomes, D.G., de Souza, J.N.: Elasticity in cloud computing: a survey. Ann. Telecommun.-Annales des TéléCommuni 70, 289–309 (2015)CrossRefGoogle Scholar
  27. 27.
    Cruz, F., Maia, F., Matos, M., Oliveira, R., Paulo, J., Pereira, J., Vilaça, R.: Met: workload aware elasticity for NoSQL. In: Eighth Eurosys Conference 2013, EuroSys 2013, Prague, Czech Republic, 14–17 April 2013, pp. 183–196 (2013)Google Scholar
  28. 28.
    Dutreilh, X., Rivierre, N., Moreau, A., Malenfant, J., Truck, I.: From data center resource allocation to control theory and back. In: IEEE CLOUD, pp. 410–417 (2010)Google Scholar
  29. 29.
    Dutta, S., Gera, S., Verma, A., Viswanathan, B.: Smartscale: automatic application scaling in enterprise clouds. In: IEEE CLOUD. pp. 221–228 (2012)Google Scholar
  30. 30.
    Elmore, A.J., Das, S., Agrawal, D., El Abbadi, A.: Zephyr: live migration in shared nothing databases for elastic cloud platforms. In: Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data, pp. 301–312 (2011)Google Scholar
  31. 31.
    Elmore, A.J., Das, S., Pucher, A., Agrawal, D., El Abbadi, A., Yan, X.: Characterizing tenant behavior for placement and crisis mitigation in multitenant DBMSS, pp. 517–528 (2013)Google Scholar
  32. 32.
    Fernandez, H., Pierre, G., Kielmann, T.: Autoscaling web applications in heterogeneous cloud infrastructures. In: 2014 IEEE International Conference on Cloud Engineering, pp. 195–204 (2014)Google Scholar
  33. 33.
    Galante, G., de Bona, L.C.E.: A survey on cloud computing elasticity. In: 2012 IEEE Fifth International Conference on Utility and Cloud Computing (UCC), pp. 263–270 (2012)Google Scholar
  34. 34.
    Gedik, B., Andrade, H., Wu, K.L., Yu, P.S., Doo, M.: SPADE: the system s declarative stream processing engine. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 1123–1134 (2008)Google Scholar
  35. 35.
    Gueye, S.M.K., Palma, N.D., Rutten, É., Tchana, A., Berthier, N.: Coordinating self-sizing and self-repair managers for multi-tier systems. Future Gener. Comp. Syst. 35, 14–26 (2014)CrossRefGoogle Scholar
  36. 36.
    Han, R., Ghanem, M., Guo, L., Guo, Y., Osmond, M.: Enabling cost-aware and adaptive elasticity of multi-tier cloud applications. Future Gener. Comp. Syst. 32, 82–98 (2014)CrossRefGoogle Scholar
  37. 37.
    Han, R., Guo, L., Ghanem, M.M., Guo, Y.: Lightweight resource scaling for cloud applications. In: 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp. 644–651 (2012)Google Scholar
  38. 38.
    Iqbal, W., Dailey, M.N., Carrera, D., Janecek, P.: Adaptive resource provisioning for read intensive multi-tier applications in the cloud. Future Gener. Comput. Syst. 27(6), 871–879 (2011)CrossRefGoogle Scholar
  39. 39.
    Jamshidi, P., Ahmad, A., Pahl, C.: Autonomic resource provisioning for cloud-based software. In: Proceedings of the 9th International Symposium on Software Engineering for Adaptive and Self-managing Systems, SEAMS 2014, Hyderabad, India, 2–3 June 2014, pp. 95–104 (2014)Google Scholar
  40. 40.
    Kalyvianaki, E., Charalambous, T., Hand, S.: Self-adaptive and self-configured CPU resource provisioning for virtualized servers using Kalman filters. In: Proceedings of the 6th International Conference on Autonomic Computing, ICAC 2009, 15–19 June 2009, Barcelona, Spain, pp. 117–126 (2009)Google Scholar
  41. 41.
    Kassela, E., Boumpouka, C., Konstantinou, I., Koziris, N.: Automated workload-aware elasticity of NoSQL clusters in the cloud. In: 2014 IEEE International Conference on Big Data, Big Data 2014, Washington, DC, USA, 27–30 October 2014, pp. 195–200 (2014)Google Scholar
  42. 42.
    Katukoori, V.K.: Standardizing Availability Definition. University of New Orleans, New orleans (1995)Google Scholar
  43. 43.
    Kaur, P.D., Chana, I.: A resource elasticity framework for QOS-aware execution of cloud applications. Future Gener. Comp. Syst. 37, 14–25 (2014)CrossRefGoogle Scholar
  44. 44.
    Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Comput. 36(1), 41–50 (2003)CrossRefGoogle Scholar
  45. 45.
    Konstantinou, I., Angelou, E., Tsoumakos, D., Boumpouka, C., Koziris, N., Sioutas, S.: Tiramola: elastic NoSQL provisioning through a cloud management platform. In: Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data, pp. 725–728. ACM (2012)Google Scholar
  46. 46.
    Li, Z., Zhang, H., Obrien, L., Cai, R., Flint, S.: On evaluating commercial cloud services: a systematic review. J. Syst. Softw. 86, 2371–2393 (2013)CrossRefGoogle Scholar
  47. 47.
    Lim, H.C., Babu, S., Chase, J.S.: Automated control for elastic storage. In: Proceedings of the 7th International Conference on Autonomic Computing, pp. 1–10 (2010)Google Scholar
  48. 48.
    Lorido-Botran, T., Miguel-Alonso, J., Lozano, J.A.: A review of auto-scaling techniques for elastic applications in cloud environments. J. Grid Comput. 12(4), 559–592 (2014)CrossRefGoogle Scholar
  49. 49.
    Marshall, P., Keahey, K., Freeman, T.: Elastic site: using clouds to elastically extend site resources. In: CCGRID, pp. 43–52 (2010)Google Scholar
  50. 50.
    Mastroianni, C., Meo, M., Papuzzo, G.: Probabilistic consolidation of virtual machines in self-organizing cloud data centers. IEEE Trans. Cloud Comput. 1(2), 215–228 (2013)CrossRefGoogle Scholar
  51. 51.
    Moore, L., Bean, K., Ellahi, T.: A coordinated reactive and predictive approach to cloud elasticity. In: The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization, CLOUD COMPUTING 2013, pp. 87–92 (2013)Google Scholar
  52. 52.
    Moore, L.R., Bean, K., Ellahi, T.: Transforming reactive auto-scaling into proactive auto-scaling. In: Proceedings of the 3rd International Workshop on Cloud Data and Platforms, pp. 7–12 (2013)Google Scholar
  53. 53.
    Naskos, A., Stachtiari, E., Gounaris, A., Katsaros, P., Tsoumakos, D., Konstantinou, I., Sioutas, S.: Dependable horizontal scaling based on probabilistic model checking. In: CCGrid (2015)Google Scholar
  54. 54.
    Nguyen, H., Shen, Z., Gu, X., Subbiah, S., Wilkes, J.: AGILE: elastic distributed resource scaling for infrastructure-as-a-service. In: 10th International Conference on Autonomic Computing, ICAC 2013, San Jose, CA, USA, 26–28 June 2013, pp. 69–82 (2013)Google Scholar
  55. 55.
    Paraiso, F., Merle, P., Seinturier, L.: Managing elasticity across multiple cloud providers. In: Proceedings of the 2013 International Workshop on Multi-cloud Applications and Federated Clouds, pp. 53–60 (2013)Google Scholar
  56. 56.
    Paraiso, F., Merle, P., Seinturier, L.: soCloud: a service-oriented component-based PaaS for managing portability, provisioning, elasticity, and high availability across multiple clouds. CoRR abs/1407.1963 (2014)
  57. 57.
    Perez-Palacin, D., Mirandola, R., Calinescu, R.: Synthesis of adaptation plans for cloud infrastructure with hybrid cost models. In: 2014 40th EUROMICRO Conference on Software Engineering and Advanced Applications, Verona, Italy, 27–29 August 2014, pp. 443–450 (2014)Google Scholar
  58. 58.
    di Sanzo, P., Rughetti, D., Ciciani, B., Quaglia, F.: Auto-tuning of cloud-based in-memory transactional data grids via machine learning. In: Second Symposium on Network Cloud Computing and Applications, NCCA 2012, London, UK, 3–4 December 2012, pp. 9–16 (2012)Google Scholar
  59. 59.
    Serafini, M., Mansour, E., Aboulnaga, A., Salem, K., Rafiq, T., Minhas, U.F.: Accordion: elastic scalability for database systems supporting distributed transactions. PVLDB 7(12), 1035–1046 (2014)Google Scholar
  60. 60.
    Serrano, D., Bouchenak, S., Kouki, Y., Ledoux, T., Lejeune, J., Sopena, J., Arantes, L., Sens, P.: Towards QOS-oriented sla guarantees for online cloud services. In: 2013 13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp. 50–57 (2013)Google Scholar
  61. 61.
    Shen, Z., Subbiah, S., Gu, X., Wilkes, J.: Cloudscale: elastic resource scaling for multi-tenant cloud systems. In: Proceedings of the 2nd ACM Symposium on Cloud Computing, pp. 5:1–5:14 (2011)Google Scholar
  62. 62.
    da Silva Dias, A., Nakamura, L.H.V., Estrella, J.C., Santana, R.H.C., Santana, M.J.: Providing IaaS resources automatically through prediction and monitoring approaches. In: IEEE Symposium on Computers and Communications, ISCC 2014, Funchal, Madeira, Portugal, 23–26 June 2014, pp. 1–7 (2014)Google Scholar
  63. 63.
    Tan, Y., Nguyen, H., Shen, Z., Gu, X., Venkatramani, C., Rajan, D.: Prepare: predictive performance anomaly prevention for virtualized cloud systems. In: 2012 IEEE 32nd International Conference on Distributed Computing Systems (ICDCS), pp. 285–294 (2012)Google Scholar
  64. 64.
    Tsoumakos, D., Konstantinou, I., Boumpouka, C., Sioutas, S., Koziris, N.: Automated, elastic resource provisioning for NoSQL clusters using tiramola. In: 2013 13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp. 34–41 (2013)Google Scholar
  65. 65.
    Uhlig, R., Neiger, G., Rodgers, D., Santoni, A.L., Martins, F., Anderson, A.V., Bennett, S.M., Kägi, A., Leung, F.H., Smith, L.: Intel virtualization technology. Computer 38(5), 48–56 (2005)CrossRefGoogle Scholar
  66. 66.
    Vaquero, L.M., Morán, D., Galán, F., Alcaraz-Calero, J.M.: Towards runtime reconfiguration of application control policies in the cloud. J. Netw. Syst. Manage. 20(4), 489–512 (2012)CrossRefGoogle Scholar
  67. 67.
    Varga, A., Hornig, R.: An overview of the OMNeT++ simulation environment. In: Proceedings of the 1st International Conference on Simulation Tools and Techniques for Communications, Networks and Systems & Workshops, p. 60. ICST (2008)Google Scholar
  68. 68.
    Vasic, N., Novakovic, D.M., Miucin, S., Kostic, D., Bianchini, R.: Dejavu: accelerating resource allocation in virtualized environments. In: ASPLOS, pp. 423–436 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Athanasios Naskos
    • 1
    Email author
  • Anastasios Gounaris
    • 1
  • Spyros Sioutas
    • 2
  1. 1.Department of InformaticsAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Department of InformaticsIonian UniversityCorfuGreece

Personalised recommendations