An Adaptive Markov Chain Monte Carlo Method for Bayesian Finite Element Model Updating

  • I. Boulkaibet
  • T. Marwala
  • M. I. Friswell
  • S. Adhikari
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)


In this paper, an adaptive Markov Chain Monte Carlo (MCMC) approach for Bayesian finite element model updating is presented. This approach is known as the Adaptive Hamiltonian Monte Carlo (AHMC) approach. The convergence rate of the Hamiltonian/Hybrid Monte Carlo (HMC) algorithm is high due to its trajectory which is guided by the derivative of the posterior probability distribution function. This can lead towards high probability areas in a reasonable period of time. However, the HMC performance decreases when sampling from posterior functions of high dimension and when there are strong correlations between the uncertain parameters. The AHMC approach, a locally adaptive version of the HMC approach, allows efficient sampling from complex posterior distribution functions and in high dimensions. The efficiency and accuracy of the AHMC method are investigated by updating a real structure.


Finite element model updating Bayesian Markov Chain Monte Carlo Hybrid Monte Carlo Adaptive 


  1. 1.
    Bhatti, M.A.: Fundamental Finite Element Analysis and Applications. Wiley, New York (2005)Google Scholar
  2. 2.
    Onãte, E.: Structural Analysis with the Finite Element Method. Linear Statics, vol. 1: Basis and Solids. Springer, Dordrecht (2009)Google Scholar
  3. 3.
    Rao, S.S.: The Finite Element Method in Engineering, 4th edn. Elsevier Butterworth Heinemann, Burlington (2004)Google Scholar
  4. 4.
    Friswell, M.I., Mottershead, J.E.: Finite Element Model Updating in Structural Dynamics. Kluwer, Academic Publishers, Dordrecht (1995)Google Scholar
  5. 5.
    Marwala, T.: Finite Element Model Updating Using Computational Intelligence Techniques. Springer, London, UK (2010)CrossRefzbMATHGoogle Scholar
  6. 6.
    Boulkaibet, I., Mthembu, L., De Lima Neto, F., Marwala, T.: Finite element model updating using fish school search optimization method. In: 1st BRICS & 11th CBIC Brazilian Congress on Computational Intelligence, Brazil, 2013Google Scholar
  7. 7.
    Boulkaibet, I., Mthembu, L., De Lima Neto, F., Marwala, T.: Finite element model updating using fish school search and volitive particle swarm optimization. Integr. Comput. Aid. Eng. 22(4), 361–376 (2015)CrossRefGoogle Scholar
  8. 8.
    Yuen, K.V.: Bayesian Methods for Structural Dynamics and Civil Engineering. Wiley, New York (2010)CrossRefGoogle Scholar
  9. 9.
    Haddad Khodaparast, H.: Stochastic Finite Element Model Updating and its Application in Aero-Elasticity. Ph.D. Thesis, University of Liverpool (2010)Google Scholar
  10. 10.
    Marwala, T., Sibisi, S.: Finite element model updating using Bayesian approach. In: Proceedings of the International Modal Analysis Conference, Orlando, Florida, USA, 2005. ISBN: 0-912053-89-5Google Scholar
  11. 11.
    Moens, D., Vandepitte, D.: Recent advances in non-probabilistic approaches for non-deterministic dynamic finite element analysis. Arch. Comput. Meth. Eng. 13(3), 389–464 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hanss, M., Willner, K.: A fuzzy arithmetical approach to the solution of finite element problems with uncertain parameters. Mech. Res. Commun. 27(3), 257–272 (2000)CrossRefzbMATHGoogle Scholar
  13. 13.
    Boulkaibet, I., Mthembu, L., Marwala, T., Friswell, M.I., Adhikari, S.: Finite element model updating using the shadow hybrid Monte Carlo technique. Mech. Syst. Sig. Process. 52, 115–132 (2015)CrossRefGoogle Scholar
  14. 14.
    Boulkaibet, I., Marwala, T., Mthembu, L., Friswell, M.I., Adhikari, S.: Finite element model updating using an evolutionary Markov Chain Monte Carlo algorithm. Dyn. Civil Struct. 2, 245–253 (2015)Google Scholar
  15. 15.
    Boulkaibet, I., Mthembu, L., Marwala, T., Friswell, M.I., Adhikari, S.: Finite element model updating using the separable shadow hybrid Monte Carlo technique. Top. Modal Anal. II 8, 267–275 (2014)Google Scholar
  16. 16.
    Boulkaibet, I., Marwala, T., Mthembu, L., Friswell, M.I., Adhikari, S.: Sampling techniques in bayesian finite element model updating. Top. Model Validat. Uncertain. Quantif. 4, 75–83 (2012)CrossRefGoogle Scholar
  17. 17.
    Boulkaibet, I.: Finite element model updating using Markov Chain Monte Carlo techniques. Ph.D. Thesis, University of Johannesburg (2015)Google Scholar
  18. 18.
    Mares, C., Mottershead, J.E., Friswell, M.I.: Stochastic model updating: part 1—theory and simulated example. Mech. Syst. Sig Process. 20(7), 1674–1695 (2006)CrossRefGoogle Scholar
  19. 19.
    Nichols, J., Link, W., Murphy, K., Olson, C.: A Bayesian approach to identifying structural nonlinearity using free-decay response: application to damage detection in composites. J. Sound Vib. 329(15), 2995–3007 (2001)CrossRefGoogle Scholar
  20. 20.
    Ching, J., Muto, M., Beck, J.L.: Structural model updating and health monitoring with incomplete modal data using Gibbs Sampler. Comput. Aid. Civil Infrast. Eng. 21(4), 242–257 (2006)CrossRefGoogle Scholar
  21. 21.
    Ching, J., Chen, Y.J.: Transitional Markov chain Monte Carlo method for Bayesian model updating, model class selection, and model averaging. J. Eng. Mech. 133(7), 816–832 (2007)CrossRefGoogle Scholar
  22. 22.
    Muto, M., Beck, J.L.: Bayesian updating and model class selection for hysteretic structural models using stochastic simulation. J. Vib. Control 14, 7–3 (2008)CrossRefzbMATHGoogle Scholar
  23. 23.
    Cheung, S.H., Beck, J.L.: Bayesian model updating using hybrid Monte Carlo simulation with application to structural dynamic models with many uncertain parameters. J. Eng. Mech. 135(4), 243–255 (2009)CrossRefGoogle Scholar
  24. 24.
    Duane, S., Kennedy, A.D., Pendleton, B.J., Roweth, D.: Hybrid Monte Carlo. Phys. Lett. B 195(2), 216–222 (1987)CrossRefGoogle Scholar
  25. 25.
    Kennedy, A.D., Pendleton, B.: Acceptances and autocorrelations in hybrid Monte Carlo. Nucl. Phys. B Proc. Suppl. 20, 118–121 (1991)CrossRefGoogle Scholar
  26. 26.
    Beskos, A., Pillai, N.S., Roberts, G.O., Sanz-Serna, J.M., Stuart, A.M.: Optimal tuning of the hybrid Monte-Carlo algorithm. Bernoulli, 319(5A), 1501–1534 (2011)Google Scholar
  27. 27.
    Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)zbMATHGoogle Scholar
  28. 28.
    Neal, R.M., MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte Carlo, volume 2, pp. 113–162. Chapman & Hall/CRC Press, Boca Raton, FL (2011)Google Scholar
  29. 29.
    Andrieu, C., Thoms, J.: A tutorial on adaptive MCMC. Stat. Comput. 18(4), 343–373 (2008)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Neal, R.M.: Annealed importance sampling. Stat. Comput. 11(2), 125–139 (2001)MathSciNetCrossRefGoogle Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2016

Authors and Affiliations

  • I. Boulkaibet
    • 1
  • T. Marwala
    • 1
  • M. I. Friswell
    • 2
  • S. Adhikari
    • 2
  1. 1.Electrical and Electronic Engineering DepartmentUniversity of JohannesburgAuckland ParkSouth Africa
  2. 2.College of Engineering, Swansea UniversitySwanseaUK

Personalised recommendations