Advertisement

Suffix Type String Matching Algorithms Based on Multi-windows and Integer Comparison

  • Hongbo Fan
  • Shupeng Shi
  • Jing ZhangEmail author
  • Li Dong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9543)

Abstract

In this paper, 3 classic suffix type algorithms: QS, Tuned BM and BMHq were improved by reducing the average cost of basic operations. Firstly, the multi-windows method was used to let the calculations of the jump distance run in parallel and pipelining. Secondly, the comparison unit was increased to integer to reduce the total number and the average cost of comparisons. Especially for BMHq, the jump distance was increased by good prefix rule and the operations to get the jump distance were simplified by unaligned integer read. Thus, 3 algorithms named QSMI, TBMMI and BMHqMI were presented. These algorithms are faster than other known algorithms in many cases.

Keywords

String matching Single pattern Multi-windows Integer comparison algorithm 

References

  1. 1.
    Daniel, M.S.: A very fast substring search algorithm. Commun. ACM 33(8), 132–142 (1990)CrossRefGoogle Scholar
  2. 2.
    Andrew, H.: Fast string searching. Softw. Pract. Exp. 21(11), 1221–1248 (1991)CrossRefGoogle Scholar
  3. 3.
    Kalsi, P., Hannu, P., Jorma, T.: Comparison of exact string matching algorithms for biological sequences. BIRD 2008, pp. 417–426. Springer, Berlin (2008)Google Scholar
  4. 4.
    Faro, S., Lecroq, T.: A multiple sliding windows approach to speed up string matching algorithms. In: Klasing, R. (ed.) SEA 2012. LNCS, vol. 7276, pp. 172–183. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Horspool, R.N.: Practical fast searching in strings. Softw. Pract. Exp. 10(6), 501–506 (1980)CrossRefGoogle Scholar
  6. 6.
    SMART: string matching research tools. http://www.dmi.unict.it/~faro/smart/
  7. 7.
    Simone, F., Simone, F., Thierry, L.: The exact online string matching problem: a review of the most recent results. ACM Comput. Surv. 45(2), 13:1–13:42 (2013)zbMATHGoogle Scholar
  8. 8.
    The large canterbury corpus. http://corpus.canterbury.ac.nz/descriptions/
  9. 9.
    Hannu, P., Jorma, T.: Variations of forward-SBNDM. In: PSC2011, pp. 3–14. Czech Technical University, Prague (2011)Google Scholar
  10. 10.
    Fredriksson, K., Grabowski, S.: Practical and optimal string matching. In: Consens, M.P., Navarro, G. (eds.) SPIRE 2005. LNCS, vol. 3772, pp. 376–387. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Wu, W., Fan, H., Liu, L., Huang, Q.: Fast string matching algorithm based on the skip algorithm. ICM 2012. LNEE, vol. 236, pp. 247–257. Springer, New York (2013)Google Scholar
  12. 12.
    Lv, Z., Fan, H., Liu, L., Huang, Q., et al.: Fast single pattern string matching algorithms based on multi-windows and integer comparison. In: IET International Conference on ICISCE 2012, pp. 1–5 (2012). doi: 10.1049/cp.2012.2326)
  13. 13.
    Fan, H., Yao, N.: Tuning the EBOM algorithm with suffix jump. ICITSE 2012. LNEE, vol. 211, pp. 965–973 (2013)Google Scholar
  14. 14.
    Chen, Z., Liu, L., Fan, H., Huang, Q., et al..: A fast exact string matching algorithms based on greedy jump and QF. ICISCE 2012. In: IET International Conference (2012). doi: 10.1049/cp.2012.2320
  15. 15.
    Fan, H., Yao, N.: Q-gram variation for EBOM. In: Proceedings of the 2012 International Conference on Information Technology and Software Engineering. LNEE, vol. 211, pp. 453–460 (2013)Google Scholar
  16. 16.
    Branislav, D., Jan, H., Hannu, P., Jorna T.: Tuning BNDM with q-grams. In: ALENEX 2009, pp. 29–37. SIAM, New York (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Hongbo Fan
    • 1
    • 2
  • Shupeng Shi
    • 1
    • 2
  • Jing Zhang
    • 1
    • 2
    Email author
  • Li Dong
    • 1
    • 2
  1. 1.Department of Computer ScienceKunming University of Science and TechnologyKunmingChina
  2. 2.Computer Technology Application Key Laboratory of YunnanKunmingChina

Personalised recommendations