Advertisement

Bitsliced Implementations of the PRINCE, LED and RECTANGLE Block Ciphers on AVR 8-Bit Microcontrollers

  • Zhenzhen BaoEmail author
  • Peng Luo
  • Dongdai Lin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9543)

Abstract

Due to the demand for low-cost cryptosystems from industry, there spring up a lot of lightweight block ciphers which are excellent for some different implementation features. An innovative design is the block cipher PRINCE. To meet the requirement for low-latency and instantaneously encryption, NXP Semiconductors and its academic partners cooperate and design the low-latency block cipher PRINCE. Another good example is the block cipher LED which is very compact in hardware, and whose designers also aim to maintain a reasonable software performance. In this paper, we demonstrate how to achieve high software performance of these two ciphers on the AVR 8-bit microcontrollers using bitslice technique. Our bitsliced implementations speed up the execution of these two ciphers several times with less memory usage than previous work. In addition to these two nibble-oriented ciphers, we also evaluate the software performance of a newly proposed lightweight block cipher RECTANGLE, whose design takes bitslicing into consider. Our results show that RECTANGLE has very high ranks among the existing block ciphers on 8-bit microcontrollers in the real-world usage scenarios.

Keywords

PRINCE LED RECTANGLE Bitslice Block cipher Lightweight Cryptography Microcontroller Wireless sensor AVR ATtiny Implementation 

Notes

Acknowledgement

Many thanks go to the anonymous reviewers. The research presented in this paper is supported by the National Natural Science Foundation of China (No.61379138), the “Strategic Priority Research Program” of the Chinese Academy of Sciences (No.XDA06010701).

References

  1. 1.
    Daemen, J., Rijmen, V.: The Design of Rijndael - AES - The Advanced Encryption Standard. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  2. 2.
    Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen, L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen, S.S., Yalçın, T.: PRINCE – a low-latency block cipher for pervasive computing applications. In: Sako, K., Wang, X. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 208–225. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. http://eprint.iacr.org/2012/600
  5. 5.
    Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: SIMON and SPECK: block ciphers for the internet of things. http://eprint.iacr.org/2015/585
  7. 7.
    Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Poschmann, A.: Lightweight cryptography cryptographic engineering for a pervasive world. PhD Dissertation, Faculty of Electrical Engineering and Information Technology, Ruhr-University Bochum, Germany (2009)Google Scholar
  9. 9.
    Albrecht, M.R., Driessen, B., Kavun, E.B., Leander, G., Paar, C., Yalçın, T.: Block Ciphers – Focus on the linear layer (feat. PRIDE). In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 57–76. Springer, Heidelberg (2014)Google Scholar
  10. 10.
    Atmel Corporation. 8-bit AVR Instruction Set. http://www.atmel.com/images/doc0856.pdf
  11. 11.
    Atmel Corporation. AVR 8-bit Microcontrollers. http://www.atmel.com/products/microcontrollers/avr/default.aspx
  12. 12.
    Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockcipher CLEFIA (Extended Abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 181–195. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Hong, D., Sung, J., Hong, S.H., Lim, J.-I., Lee, S.-J., Koo, B.-S., Lee, C.-H., Chang, D., Lee, J., Jeong, K., Kim, H., Kim, J.-S., Chee, S.: HIGHT: a new block cipher suitable for low-resource device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 46–59. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — a family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Gong, Z., Nikova, S., Law, Y.W.: KLEIN: a new family of lightweight block ciphers. In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 1–18. Springer, Heidelberg (2012)Google Scholar
  16. 16.
    Wu, W., Zhang, L.: LBlock: a lightweight block cipher. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE: a lightweight block cipher for multiple platforms. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 339–354. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  18. 18.
    Zhang, W., Bao, Z., Lin, D., Rijmen, V., Yang, B., Verbauwhede, I.: RECTANGLE: a bit-slice ultra-lightweight block cipher suitable for multiple platforms. Sci. China Inf. Sci. 58(12), 1–15 (2015)Google Scholar
  19. 19.
  20. 20.
    Law, Y.W., Doumen, J., Hartel, P.H.: Survey and benchmark of block ciphers for wireless sensor networks. ACM Trans. Sensor Networks (TOSN) 2(1), 65–93 (2006)CrossRefGoogle Scholar
  21. 21.
    Eisenbarth, T., Kumar, S., Paar, C., Poschmann, A., Uhsadel, L.: A survey of lightweight-cryptography implementations. IEEE Design & Test of Computers 24(6), 522–533 (2007)CrossRefGoogle Scholar
  22. 22.
    Kerckhof, S., Durvaux, F., Hocquet, C., Bol, D., Standaert, F.-X.: Towards green cryptography: a comparison of lightweight ciphers from the energy viewpoint. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 390–407. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  23. 23.
    Knežević, M., Nikov, V., Rombouts, P.: Low-latency encryption – is “Lightweight = Light + Wait”? In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 426–446. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  24. 24.
    Eisenbarth, T., Gong, Z., Güneysu, T., Heyse, S., Indesteege, S., Kerckhof, S., Koeune, F., Nad, T., Plos, T., Regazzoni, F., Standaert, F.-X., van Oldeneel tot Oldenzeel, L.: Compact implementation and performance evaluation of block ciphers in ATtiny devices. In: Vaudenay, S., Mitrokotsa, A. (eds.) AFRICACRYPT 2012. LNCS, vol. 7374, pp. 172–187. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  25. 25.
    Eisenbarth, T., Gong, Z., Güneysu, T., Heyse, S., Indesteege, S., Kerckhof, S., Koeune, F., Nad, T., Plos, T., Regazzoni, F. et al.: Implementations of Low Cost Block Ciphers in Atmel AVR Devices, February 2015. http://perso.uclouvain.be/fstandae/lightweight_ciphers/
  26. 26.
    Matsui, M., Murakami, Y.: Minimalism of software implementation extensive performance analysis of symmetric primitives on the RL78 microcontroller. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 393–409. Springer, Heidelberg (2014)Google Scholar
  27. 27.
    Cazorla, M., Marquet, K., Minier, M.: Survey and benchmark of lightweight block ciphers for wireless sensor networks. http://eprint.iacr.org/2013/295
  28. 28.
    Cazorla, M., Marquet, K., Minier, M.: Survey and Benchmark of Lightweight Block Ciphers for Wireless Sensor Networks. In: Samarati, P. (ed.), SECRYPT 2013 - Proceedings of the 10th International Conference on Security and Cryptography, Reykjavík, Iceland, 29–31 July 2013, pp. 543–548. SciTePress (2013)Google Scholar
  29. 29.
    Cazorla, M., Marquet, K., and Minier, M.: Implementations of lightweight block ciphers on a WSN430 sensor, February 2015. http://bloc.project.citi-lab.fr/library.html
  30. 30.
    Dinu, D., Biryukov, A., Großschädl, J., Khovratovich, D., Corre, Y.L., Perrin, L.: FELICS - fair evaluation of lightweight cryptographic systems, July 2015. http://csrc.nist.gov/groups/ST/lwc-workshop2015/papers/session7-dinu-paper.pdf
  31. 31.
    CryptoLUX.: FELICS (Fair Evaluation of Lightweight Cryptographic Systems), 15 August 2015. http://www.cryptolux.org/index.php/FELICS
  32. 32.
    Dinu, D., Corre, Y.L., Khovratovich, D., Perrin, L., Großschädl, J., Biryukov, A.: Triathlon of lightweight block ciphers for the internet of things (2015). http://eprint.iacr.org/2015/209
  33. 33.
    CryptoLUX.: FELICS Triathlon, 12 August 2015. http://www.cryptolux.org/index.php/FELICS_Triathlon
  34. 34.
    Dinu, D., Corre, Y.L., Khovratovich, D., Perrin, L., Großschädl, J., Biryukov, A.: FELICS block ciphers brief results and FELICS block ciphers detailed results, 1 October 2015 http://www.cryptolux.org/index.php/FELICS_Block_Ciphers_Brief_Results, http://www.cryptolux.org/index.php/FELICS_Block_Ciphers_Detailed_Results
  35. 35.
    Processor Watch, 8 January 2013. http://www.linleygroup.com
  36. 36.
    National Institute of Standards and Technology (NIST). Lightweight Cryptography Workshop 2015. http://www.nist.gov/itl/csd/ct/lwc_workshop2015.cfm
  37. 37.
    Shahverdi, A., Chen, C., and Eisenbarth, T.: AVRprince - an efficient implementation of PRINCE for 8-bit microprocessors. Technical Report, Worcester Polytechnic Institute (2014). http://www.ashahverdi.com/files/papers/avrPRINCEv01.pdf
  38. 38.
    Papapagiannopoulos, K.: High throughput in slices: the case of PRESENT, PRINCE and KATAN64 ciphers. In: Sadeghi, A.-R., Saxena, N. (eds.) RFIDSec 2014. LNCS, vol. 8651, pp. 137–155. Springer, Heidelberg (2014)Google Scholar
  39. 39.
    Canteaut, A., Fuhr, T., Gilbert, H., Naya-Plasencia, M., Reinhard, J.: Multiple differential cryptanalysis of round-reduced PRINCE. Presentation at Fast Software Encryption FSE 2014, London, 25 March 2014. http://fse2014.isg.rhul.ac.uk/slides/slides-09_4.pdf
  40. 40.
    Canteaut, A., Fuhr, T., Gilbert, H., Naya-Plasencia, M., Reinhard, J.: Multiple Differential Cryptanalysis of Round-Reduced PRINCE (Full version). eprint.iacr.org/2014/089
  41. 41.
    Gladman, B.: Serpent S Boxes as Boolean Functions. http://www.gladman.me.uk/
  42. 42.
    Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak Reference, January 2011. http://keccak.noekeon.org/
  43. 43.
    Courtois, N.T., Hulme, D., Mourouzis, T.: Solving circuit optimisation problems in cryptography and cryptanalysis. In: Electronic Proceedings of 2nd IMA Conference Mathematics in Defence, Swindon (2011)Google Scholar
  44. 44.
    Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The Simon and Speck Block Ciphers on AVR 8-bit Microcontrollers (2014). http://eprint.iacr.org/2014/947
  45. 45.
    Bao, Z., Zhang, W., Luo, P., Lin, D.: Bitsliced Implementations of Block Ciphers on AVR 8-bit Microcontrollers, October 2015. http://github.com/FreeDisciplina/BlockCiphersOnAVR

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Information Security, Institute of Information EngineeringChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations