Advertisement

A Multivariate Encryption Scheme with Rainbow

  • Takanori YasudaEmail author
  • Kouichi Sakurai
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9543)

Abstract

Multivariate Public Key Cryptosystems (MPKC) are a candidate of post-quantum cryptography. The MPKC signature scheme Rainbow is endowed of efficient signature generation and verification, while no major attack has been reported so far. In this paper, we propose a MPKC encryption scheme based on Rainbow. The public key of Rainbow is a surjective polynomial map, whereas the encryption scheme requires an injective polynomial map. We explain how to change the public key of Rainbow to an injective map.

Keywords

Multivariate Public Key Cryptosystem Rainbow Square Post-quantum cryptography 

Notes

Acknowledgements

This work was commissioned by Strategic Information and Communications R&D Promotion Programme (SCOPE), no. 0159-0016 Ministry of Internal Affairs and Communications, JAPAN. Dr. Xavier Dahan read carefully and proof-read the preliminary version of this paper. The authors would like to thank him.

References

  1. 1.
    Bardet, M., Faugére, J.-C., Salvy, B.: On the complexity of gröbner basis computation of semi-regular overdetermined algebraic equations. In: Proceedings of International Conference on Polynomial System Solving (ICPSS), pp. 71–75 (2004)Google Scholar
  2. 2.
    Bernstein, D.J., Buchmann, J., Dahmen, E.: Post Quantum Cryptography. Springer, Heidelberg (2009)CrossRefzbMATHGoogle Scholar
  3. 3.
    Berger, T.P., Cayrel, P.-L., Gaborit, P., Otmani, A.: Reducing key length of the McEliece cryptosystem. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 77–97. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Bettale, L., Faugére, J.-C., Perret, L.: Hybrid approach for solving multivariate systems over finite fields. J. Math. Crypt. 3(3), 177–197 (2010)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Billet, O., Gilbert, H.: Cryptanalysis of rainbow. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 336–347. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Billet, O., Macario-Rat, G.: Cryptanalysis of the square cryptosystems. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 451–468. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Clough, C., Baena, J., Ding, J., Yang, B.-Y., Chen, M.: Square, a new multivariate encryption scheme. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 252–264. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Clough, C.L., Ding, J.: Secure variants of the square encryption scheme. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 153–164. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Courtois, N.T., Daum, M., Felke, P.: On the security of HFE, HFEv- and Quartz. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 337–350. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Chen, J.M., Yang, B.-Y.: A more secure and efficacious TTS signature scheme. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 320–338. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Ding, J., Clough, C., Araujo, R.: Inverting square systems algebraically is exponential. Finite Fields Appl. 26, 32–48 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ding, J., Gower, J.E., Schmidt, D.S.: Multivariate Public Key Cryptosystems. Advances in Information Security, vol. 25. Springer, New york (2006)zbMATHGoogle Scholar
  13. 13.
    Dubois, V., Fouque, P.-A., Shamir, A., Stern, J.: Practical cryptanalysis of SFLASH. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 1–12. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Ding, J., Petzoldt, A., Wang, L.: The cubic simple matrix encryption scheme. In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 76–87. Springer, Heidelberg (2014)Google Scholar
  15. 15.
    Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 164–175. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Ding, J., Schmidt, D., Yin, Z.: Cryptanalysis of the new TTS scheme in CHES 2004. Int. J. Inf. Secur. 5(4), 231–240 (2006)CrossRefzbMATHGoogle Scholar
  17. 17.
    Ding, J., Wolf, C., Yang, B.-Y.: \(\ell \)-invertible cycles for multivariate quadratic (MQ) public key cryptography. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 266–281. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Ding, J., Yang, B.-Y., Chen, C.-H.O., Chen, M.-S., Cheng, C.-M.: New differential-algebraic attacks and reparametrization of rainbow. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 242–257. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Faugére, J.-C.: A new efficient algorithm for computing Gröbner basis (\(F_4\)). J. Pure Appl. Algebra 139(1–3), 61–88 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Faugére, J.-C.: A new efficient algorithm for computing Gröbner basis without to zero (\(F_5\)). In: Proceedings of the International Symposium on Symbolic and Algebraic Computation, pp. 75–83 (2002)Google Scholar
  21. 21.
    Fouque, P.-A., Macario-Rat, G., Perret, L., Stern, J.: Total break of the \(\ell \)-IC signature scheme. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 1–17. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Goubin, L., Courtois, N.T.: Cryptanalysis of the TTM cryptosystem. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 44–57. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  23. 23.
    Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster point multiplication on elliptic curves with efficient endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 190–200. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  24. 24.
    Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryptography on a large class of curves. J. Crypt. 24(3), 446–469 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  26. 26.
    Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer, Heidelberg (1999)Google Scholar
  27. 27.
    Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosystem by relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30. Springer, Heidelberg (1999)Google Scholar
  28. 28.
    Kipnis, A., Shamir, A.: Cryptanalysis of the oil and vinegar signature scheme. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 257–266. Springer, Heidelberg (1998)Google Scholar
  29. 29.
    Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-verification and message-encryption. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)Google Scholar
  30. 30.
    Moh, T.-T.: A fast public key system with signature ans master key functions. In: CrypTEC 1999, pp. 63–69 (1999)Google Scholar
  31. 31.
    Moh, T.-T.: A public key system with signature and master key functions. Commun. Algebra 27(5), 2207–2222 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Möller, B.: Algorithms for multi-exponentiation. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp. 165–180. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  33. 33.
    Patarin, J.: Cryptanalysis of the matsumoto and imai public key scheme of Eurocrypt ’88. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261. Springer, Heidelberg (1995)Google Scholar
  34. 34.
    Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomials (IP): two new families of asymmetric algorithms. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)Google Scholar
  35. 35.
    Patarin, J., Goubin, L., Courtois, N.T.: \(C_-+^*\) and HM: variations around two schemes of T. Matsumoto and H. Imai. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 35–50. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  36. 36.
    Patarin, J., Courtois, N.T., Goubin, L.: FLASH, a fast multivariate signature algorithm. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, p. 298. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  37. 37.
    Petzoldt, A., Bulygin, S., Buchmann, J.: Selecting parameters for the rainbow signature scheme. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 218–240. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  38. 38.
    Petzoldt, A., Bulygin, S., Buchmann, J.: CyclicRainbow – a multivariate signature scheme with a partially cyclic public key. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 33–48. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  39. 39.
    Porras, J., Baena, J., Ding, J.: ZHFE, a new multivariate public key encryption scheme. In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 229–245. Springer, Heidelberg (2014)Google Scholar
  40. 40.
    Scott, M., Benger, N., Charlemagne, M., Dominguez Perez, L.J., Kachisa, E.J.: On the final exponentiation for calculating pairings on ordinary elliptic curves. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 78–88. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  41. 41.
    Tao, C., Diene, A., Tang, S., Ding, J.: Simple matrix scheme for encryption. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 231–242. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  42. 42.
    Tao, C., Xiang, H., Petzoldt, A., Ding, J.: Simple matrix - a multivariate public key cryptosystem (MPKC) for encryption. Finite Fields Appl. 35, 352–368 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Thomae, E., Wolf, C.: Roots of square: cryptanalysis of double-layer square and square+. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 83–97. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  44. 44.
    Wolf, C., Preneel, B.: Taxonomy of public key schemes based on the problem of multivariate quadratic equations. Cryptology ePrint Archive, Report 2005/077, December 2005. http://eprint.iacr.org/2005/077
  45. 45.
    Yang, B.-Y., Chen, J.-M.: TTS: rank attacks in tame-like multivariate PKCs. Cryptology ePrint Archive, Report 2004/061, November 2004. http://eprint.iacr.org/2004/061
  46. 46.
    Yang, B.-Y., Chen, J.-M.: All in the XL family: theory and practice. In: Park, C., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 67–86. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Systems, Information Technologies and NanotechnologiesFukuokaJapan
  2. 2.Department of InformaticsKyushu UniversityFukuokaJapan

Personalised recommendations