Cerrado to Rupestrian Grasslands: Patterns of Species Distribution and the Forces Shaping Them Along an Altitudinal Gradient

  • G. Wilson Fernandes
  • Hernani A. Almeida
  • Cássio A. Nunes
  • João Henrique A. Xavier
  • Neil S. Cobb
  • Marco Antônio A. Carneiro
  • Tatiana Cornelissen
  • Frederico S. Neves
  • Sérvio P. Ribeiro
  • Yule Roberta F. Nunes
  • Ana Carolina V. Pires
  • Marina V. Beirão
Chapter

Abstract

Due to clear variations in a relatively small area, mountains represent natural laboratories for evolutionary and ecological studies. In a large degree, these variations are driven by changes in climate and soil that occur along altitudinal gradients and influence the ecology, evolution and geography of species. In spite of being old and eroded, the southern Brazilian mountains provide enough variation and heterogeneity to influence species distribution and diversity. The best-known Brazilian mountain range is the Espinhaço (the Backbone mountains). The Espinhaço is a large natural watershed divider of major ecological importance in eastern Brazil. The altitudinal gradient in the Espinhaço Mountains is low when compared to other tall mountains in the world as it only varies from ca. 650 to 2.072 m a.s.l. at the Sun Peak (Pico do Sol). This chapter synthesizes the results of 10 studies that have collectively examined the soil, climate to better understand patterns and processes associated with biodiversity of key groups of organism, including of plants, termites, dung beetles, ants, butterflies, arbuscular mycorrhizal fungi, insect herbivores and birds in an altitudinal gradient (from 800 to 1400 m a.s.l.) at Espinhaço mountain range. In this mountain range, the soils are primarily poor and the vegetation is dominated by rupestrian grasslands, and both are known to vary along the altitudinal gradient hence providing opportunities for variation in the associated organisms.

Keywords

Species Richness Arbuscular Mycorrhizal Fungi Plant Species Richness Altitudinal Gradient Dung Beetle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank the many stakeholders that have actively participated in this study by providing the land for the research, logistics, and even engaged in seminars and workshops: Serra Morena Inn, Cedro Cachoeira Textile Industry, Vellozia Reserve, Pedra do Elefante Inn, Eduardo C. Costa Jr, Planta Ltda, and Serra do Cipó National Park for logistical support. We are thankful to CNPq/PELD, ComCerrado /MCT and FAPEMIG for several grants that have supported this study, to José Eugênio C. Figueira for statistical advice, to Campestris for support in the editing and formatting some of the illustrations, and to OnsetBrasil for continued field support with the climatic stations.

References

  1. Abrahamczyk S, Kluge J, Gareca Y, Reichle S, Kessler M (2011) The influence of climatic seasonality on the diversity of different tropical pollinator groups. PLoS ONE 6:1–9CrossRefGoogle Scholar
  2. Aiba S, Kitayama K (1999) Structure, composition and species diversity in an altitude-substrate matrix of rain forest tree communities on Mount Kinabalu, Borneo. Plant Ecol 140:139–157CrossRefGoogle Scholar
  3. Alves WDF, Mota AS, Lima RAA, Bellezoni R, Vasconcellos A (2011) Termites as bioindicators of habitat quality in the caatinga, Brazil: is there agreement between structural habitat variables and the sampled assemblages? Neotrop Entomol 40:39–46CrossRefGoogle Scholar
  4. Ambarli D, Bilgin CC (2014) Effects of landscape, land use and vegetation on bird community composition and diversity in Inner Anatolian steppes. Agr Ecosyst Environ 182:37–46CrossRefGoogle Scholar
  5. Araújo LM, Fernandes GW (2003) Altitudinal patterns in a tropical ant assemblage and variation in species richness between habitats. Lundiana 4:103–109Google Scholar
  6. Araújo MB, Alagador D, Cabeza M, Nogués-Bravo D, Thuiller W (2011) Climate change threatens European conservation areas. Ecol Lett 14:484–492PubMedPubMedCentralCrossRefGoogle Scholar
  7. Arroyo MTK, Primack R, Armesto J (1982) Community studies in pollination ecology in the high temperate Andes of central Chile. I. pollination mechanisms and altitudinal variation. Am J Bot 69:82–97CrossRefGoogle Scholar
  8. Ayoade JO (2010) Introdução a Climatologia para os Trópicos. Bertrand, Rio de JaneiroGoogle Scholar
  9. Baguette M, Clobert J, Schtickzelle N (2011) Metapopulation dynamics of the bog fritillary butterfly: experimental changes in habitat quality induced negative density-dependent dispersal. Ecography 34:170–176CrossRefGoogle Scholar
  10. Bale J, Masters G, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JE, Harrington R, Hartley S, Jones TH, Lindroth RL, Press MC, Symrnioudis I, Watt A, Whittaker JB (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Chan Biol 8:1–16CrossRefGoogle Scholar
  11. Barbosa M, Fernandes GW (2014) Bottom-up effects on gall distribution. In: Fernandes GW, Santos JC (eds) Neotropical insect galls. Springer, Dordrecht, pp 99–113Google Scholar
  12. Barbosa NPU, Fernandes GW, Sanchez-Azofeifa A (2015) A relict species restricted to a quartzitic mountain in tropical America: an exemplo of microrefugium? Acta Bot Bras 29:299–309CrossRefGoogle Scholar
  13. Begon M, Townsend CR, Harper JL (2006) Ecology: from individuals to ecosystems. Blackwell, Hong KongGoogle Scholar
  14. Beniston M, Diaz HF, Bradley RS (1997) Climate change at high elevation sites: an overview. Clim Chan 36:233–251CrossRefGoogle Scholar
  15. Berbara RLL, De Sousa FA, Fonseca HMA (2006) Fungos micorrízicos arbusculares: muito além da nutrição. In: Fernandes MS (ed) Nutrição Mineral de Plantas. SBCS, Viçosa, pp 53–88Google Scholar
  16. Bezerra-Gusmão MA, Marinho RA, Kogiso KA, Bandeira AG, Barbosa MRV (2013) Nest dynamics of Constrictotermes cyphergaster (Termitidae, Nasutitermitinae) and its association with the supporting vegetation in a semiarid area, northeast, Brazil. J Arid Environ 91:1–6CrossRefGoogle Scholar
  17. Bhardwaj M, Uniyal VP, Sanyal AK, Singh AP (2012) Butterfly communities along an elevational gradient in the Tons Valley, Western Himalayas: implications of rapid assessment for insect conservation. J Asia Pac Entomol 15:207–217CrossRefGoogle Scholar
  18. Bharti H, Sharma YP, Bharti M, Pfeiffer M (2013) Ant species richness, endemicity and functional groups, along an elevational gradient in the Himalayas. Asian Myrmecol 5:79–101Google Scholar
  19. Bishop TR, Robertson MP, Rensburg BJ, Parr CL (2014) Elevation—diversity patterns through space and time: ant communities of the Maloti-Drakensberg mountains of southern Africa. J Biogeogr 41:1–13CrossRefGoogle Scholar
  20. Blanche KR (1994) Insect induced galls on Australian vegetation. In: Price PW, Mattson WJ, Baranchikov Y (eds) The ecology and evolution of gall-forming insects. Forest Service US Department of Agriculture, St. Paul, pp 49–55Google Scholar
  21. Blanche KR, Ludwig JA (2001) Species richness of gall inducing insects and host plants along an altitudinal gradient in Big Bend National Park, Texas. Am Midl Nat 145:219–232CrossRefGoogle Scholar
  22. Brandão CRF, Silva RR, Feitosa RM (2011) Cerrado ground–dwelling ants (Hymenoptera: Formicidae) as indicators of edge effects. Zool 28:379–387Google Scholar
  23. Brown JH, Lomolino MV (1998) Biogeography. Sinauer, SunderlandGoogle Scholar
  24. Bruhl CA, Mohamed M, Linsenmair KE (1999) Altitudinal distribution of leaf litter ants along a transect in primary forests on Mount Kinabalu, Sabah, Malaysia. J Trop Ecol 15:265–277CrossRefGoogle Scholar
  25. Bryant JA, Lamanna C, Morlon H, Kerkhoff AJ, Enquist BJ, Green JL (2008) Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity. Proc Natl Acad Sci USA 105:11505–11511PubMedPubMedCentralCrossRefGoogle Scholar
  26. Carneiro E, Mielke OHH, Casagrande MM, Fiedler K (2014a) Skipper richness (Hesperiidae) along elevational gradients in Brazilian Atlantic Forest. Neotrop Entomol 43:27–38CrossRefGoogle Scholar
  27. Carneiro MAA, Coelho MS, Fernandes GW (2014b) Galls in Brazilian mountains: new reports and perspectives. In: Fernandes GW, Santos JC (eds) Neotropical insect galls. Springer, Dordrecht, pp 273–293Google Scholar
  28. Carvalho F, Souza FA, Carrenho R, Moreira FMS, Jesus EC, Fernandes GW (2012) The mosaic of habitats in the high–altitude Brazilian rupestrian fields is a hotspot for arbuscular mycorrhizal fungi. Appl Soil Ecol 52:9–19CrossRefGoogle Scholar
  29. Carvalho F, Godoy EL, Lisboa FJG, Moreira FMS, Souza FA, Berbara RLL, Fernandes GW (2014) Relationship between physical and chemical soil attributes and plant species diversity in tropical mountain ecosystems from Brazil. J Mt Sci 11:875–883CrossRefGoogle Scholar
  30. Connor EF, Taverner MP (1997) The evolution and adaptive significance of the leaf–mining habit. Oikos 79:6–25CrossRefGoogle Scholar
  31. Costa FV, Mello R, Lana CT, Neves FS (2015) Ant fauna in megadiverse mountains: a checklist for the rocky grasslands. Sociobiol 62:228–245Google Scholar
  32. Coutinho ES, Fernandes GW, Berbara RLL, Valério HM, Goto BT (2015) Variation of arbuscular mycorrhizal fungal communities along an altitudinal gradient in rupestrian grasslands in Brazil. Mycorrhiza 25:627–638PubMedCrossRefGoogle Scholar
  33. Cumbrera AV (1998) Diversidad de insectos minadores en un bosque tropical. Dissertation, Universidad de PanamaGoogle Scholar
  34. Davies AB, Eggleton P, van Rensburg BJ, Parr CL (2015) Seasonal activity patterns of African savanna termites vary across a rainfall gradient. Ins Soc 62:157–165CrossRefGoogle Scholar
  35. Davis ALV, Scholtz CH (2001) Historical vs. ecological factors influencing global patterns of scarabaeine dung beetle diversity. Div Dist 7:161–174CrossRefGoogle Scholar
  36. Delabie JH, Fisher BL, Majer Wright IW (2000) Sampling effort and choice of methods. In: Agosti D, Majer JD, Alonso LE, Schultz TR (eds) Ants: standard methods for measuring and monitoring biodiversity. Smithsonian institution press, Washington and London, pp 145–154Google Scholar
  37. DeVries PJ (1987) The butterflies of Costa Rica and their natural history. Vol I: Papilionidae, Pieridae, Nymphalidae. Princeton University Press, New Jersey, p 456Google Scholar
  38. Donovan SE, Eggleton P, Martin A (2002) Species composition of termites of the Nyika plateau forests, northern Malawi, over an altitudinal gradient. Afr J Ecol 40:379–385CrossRefGoogle Scholar
  39. Dossin IA, Dossin TM, Chaves MLSC (1990) Compartimentação estratigráfica do supergrupo Espinhaço em Minas Gerais - os grupos Diamantina e Conselheiro Mata. Rev Bras Geoc 20:178–186Google Scholar
  40. Dury GH (1972) High temperature extremes in Austrália. Ann Assoc Am Geo 62:388–400CrossRefGoogle Scholar
  41. Eiten G (1972) The cerrado vegetation of Brazil. Bot Rev 38:201–341CrossRefGoogle Scholar
  42. Escobar F, Lobo JM, Halffter G (2005) Altitudinal variation of dung beetle (Scarabaeidae: Scarabaeinae) assemblages in the Colombian Andes. Glob Ecol Biogeogr 14:327–337CrossRefGoogle Scholar
  43. Faeth SH, Mopper S, Simberloff D (1981) Abundances and diversity of leaf–mining insects on three oak host species: effects of host plant phenology and nitrogen content of leaves. Oikos 37:238–251CrossRefGoogle Scholar
  44. Fernandes GW (1992) A gradient analysis of plant forms from northern Arizona. J Ariz-Nev Acad Sci 25:21–30Google Scholar
  45. Fernandes GW, Lara ACF (1993) Diversity of Indonesian gall–forming herbivores along altitudinal gradients. Biodiv Lett 1:186–192CrossRefGoogle Scholar
  46. Fernandes GW, Price PW (1988) Biogeographical gradients in galling species richness: tests of hypotheses. Oecologia 76:161–167CrossRefGoogle Scholar
  47. Fernandes GW, Price PW (1991) Comparison of tropical and temperate galling species richness: the roles of environmental harshness and plant nutrient status. In: Price PW, Lewinsohn TM, Fernandes GW, Benson WW (eds) Plant–animal interactions: evolutionary ecology in tropical and temperate regions. Wiley, New York, pp 91–115Google Scholar
  48. Fernandes GW, Lara ACF, Price PW (1994) The geography of galling insects and the mechanisms resulting in patterns. In: Price PW, Mattson WJ, Baranchikov Y (eds) Gall–forming insects: ecology, physiology and evolution. Forest Service US Department of Agriculture, St. Paul, pp 42–48Google Scholar
  49. Fernandes GW, Carneiro MAA, Lara ACF, Allain LR, Andrade GI, Julião GR, Reis TR, Silva IM (1996) Galling insects on neotropical species of Baccharis (Asteraceae). Trop Zool 9:315–332CrossRefGoogle Scholar
  50. Fernandes GW, Castro FMC, Faira ML, Marques ESA, Greco MKB (2004) Effects of hygrothermal stress, plant richness, and architecture on mining insect diversity. Biotropica 36:240–247Google Scholar
  51. Fernandes GW, Silva JO, Espírito-Santo MM, Fagundes M, Oki Y, Carneiro MAA (2014) Baccharis: A neotropical model system to study insect plant interactions. In: Fernandes GW, Santos JC (eds) Neotropical insect galls. Springer, Dordrecht, pp 193–219Google Scholar
  52. Fierer N, McCain CM, Meir P, Zimmermann M, Rapp JM, Silman MR, Knight R (2011) Microbes do not follow the elevational diversity patterns of plants and animals. Ecology 92:797–804PubMedCrossRefGoogle Scholar
  53. Fisher BL (1998) Ant diversity patterns along an elevational gradient in the Reserve Special d’Anjanaharibesud and on the western Masoala Peninsula, Madagascar. Field Zool 90:39–67Google Scholar
  54. Fritzsons E, Mantovani LE, Aguiar AV (2008) Relação entre altitude e temperatura: uma contribuição ao zoneamento climático no estado do Paraná. Rev Est Amb 10:49–64Google Scholar
  55. Frizzo TLM, Campos RI, Vasconcelos HL (2011) Contrasting effects of fire on arboreal and ground–dwelling ant communities of a neotropical Savanna. Biotropica 44:1–8Google Scholar
  56. Gagné RJ (1994) The gall midges of the neotropical region. Cornell University Press, IthacaGoogle Scholar
  57. Gentry AH (1988) Changes in plant community diversity and floristic composition on environmental and geographical gradientes. Ann Mo Bot Gard 75:1–34CrossRefGoogle Scholar
  58. Gerold G, Schawe M, Bach K (2008) Hydrometeorologic, pedologic and vegetation patterns along an elevational transect in the montane forest of the Bolivian Yungas. Erde 139:141–168Google Scholar
  59. Glarizin GE (1997) Precipitation distribution with altitude. Theor Appl Climatol 58:141–145CrossRefGoogle Scholar
  60. Gonçalves-Alvim SJ, Fernandes GW (2001) Biodiversity of galling insects: historical, community and habitat effects in four neotropical savannas. Biodiv Cons 10:79–98CrossRefGoogle Scholar
  61. Halffter G, Edmonds WD (1982) The nesting behaviour of dung beetles (Scarabaeinae): an ecological and evolutive approach. Instituto de Ecología, MéxicoGoogle Scholar
  62. Hamilton AC (1975) A quantitative analysis of altitudinal zonation in Uganda forests. Vegetatio 30:99–106CrossRefGoogle Scholar
  63. Hering EM (1951) Biology of the leaf miners. Junk, The HagueCrossRefGoogle Scholar
  64. Herzog SK, Hamel-Leigue AC, Larsen TH, Mann DJ, Soria-Auza RW, Gill BD, Edmonds WD, Spector S (2013) Elevational distribution and conservation biogeography of Phanaeine dung beetles (Coleoptera: Scarabaeinae) in Bolivia. PLoS ONE. doi: 10.1371/journal.pone.0064963 Google Scholar
  65. Holland PG, Steyn DG (1975) Vegetational responses to latitudinal in slope angle and aspect. J Biogeog 179–183Google Scholar
  66. Holt EG (1928) An ornithological survey of the Serra do Itatiaya, Brazil. Bull Amer Mus Nat Hist 57:251–326Google Scholar
  67. Hughes L (2000) Biological consequences of global warming: is the signal already apparent? Tren Ecol Evol 15:56–61CrossRefGoogle Scholar
  68. Hussain MZ, Malik NZ (2012) High altitude forest composition diversity and its component in a part of Ganga Chotti and Bedori Hills District Bagh. Azad Jammu and Kashmir Pakistan. AGD Land Environ 6:31–40Google Scholar
  69. IPCC (2014) Climate change 2014: synthesis report. Core writing team. In: Pachauri RK, Meyer LA (eds) Contribution of working groups I, II and III to the Fifth Assessment report of the Intergovernmental panel on climate change. IPCC, SwitzerlandGoogle Scholar
  70. Joly CA, Assis MA, Bernacci LC, Tamashiro JY, Campos MCR, Gomes JAMA, Lacerda MS, Santos FAM, Pedroni F, Pereira LS, Padgurshi MCG, Prata EMB, Ramos E, Torres RB, Rochelle A, Martins FR, Alves LF, Vieira SA, Martinelli LA, Camargo PB, Aidar MPM, Eisenlohr PV, Simões E, Villani JP, Belinello R (2012) Florística e fitossociologia em parcelas permanentes da Mata Atlântica do sudeste do Brasil ao longo de um gradiente altitudinal. Biota Neotrop 12:125–145CrossRefGoogle Scholar
  71. Jones DT, Eggleton P (2000) Sampling termite assemblages in tropical forests: testing a rapid biodiversity assessment protocol. J Appl Ecol 37:191–203CrossRefGoogle Scholar
  72. Julião GR, Venticique EM, Fernandes GW, Price PW (2014) Unexpected hight diversity of galling insects in the Amazonian upper canopy: the savanna out there. PLoS ONE 9(12):e114986PubMedPubMedCentralCrossRefGoogle Scholar
  73. Kitayama K (1992) An altitudinal transect study of the vegetation on Mount Kinabalu, Borneo. Vegetatio 102:149–171CrossRefGoogle Scholar
  74. Korner C (2007) The use of “altitude” in ecological research. Trend Ecol Evol 22:569–574CrossRefGoogle Scholar
  75. Lara ACF, Fernandes GW, Gonçalves-Alvim SJ (2002) Tests of hypotheses on patterns of gall distribution along an altitudinal gradient. Trop Zool 15:219–232CrossRefGoogle Scholar
  76. Leuschner C, Moser G, Bertsch C, Roderstein M, Hertel D (2007) Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador. Bas Appl Ecol 8:219–230CrossRefGoogle Scholar
  77. Levanoni O, Levin N, Pe’er G, Turbé A, Kark S (2011) Can we predict butterfly diversity along an elevation gradient from space? Ecography 34:372–383CrossRefGoogle Scholar
  78. Lewis OT, Wilson RJ, Harper MC (1998) Endemic butterflies of Grande Comore: habitat preferences and conservation priorities. Biol Cons 85:113–121CrossRefGoogle Scholar
  79. Lieberman D, Lieberman M, Peralta R, Hartshorn GS (1996) Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. J Ecol 84:137–152CrossRefGoogle Scholar
  80. Lisboa FJG, Chaer G, Fernandes MF, Berbara RLL, Madari BE (2014) The match between microbial community structure and soil properties is modulated by land use types and sample origin within an integrated agroecosystem. Soil Biol Biochem 78:97–118CrossRefGoogle Scholar
  81. Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD (2009) The velocity of climate change. Nature 462:1052–1057PubMedCrossRefGoogle Scholar
  82. Lobo JM, Halffter G (2000) Biogeographical and ecological factors affecting the altitudinal variation of mountainous communities of coprophagous beetles (Coleoptera: Scarabaeoidea): a comparative study. Ann Entomol Soc Am 93:115–126CrossRefGoogle Scholar
  83. Loiselle BA, Blake JG (1991) Temporal variation in birds and fruits along an elevational gradient in Costa Rica. Ecology 72:180–183CrossRefGoogle Scholar
  84. Lomolino MV (2001) Elevation gradients of species–density: historical and prospective views. Glob Ecol Biogeogr 10:3–13CrossRefGoogle Scholar
  85. Longino JT, Colwell RK (2011) Density compensation, species composition, and richness of ants on a neotropical elevational gradient. Ecosphere 2:1–20CrossRefGoogle Scholar
  86. Louzada J, Lima AP, Matavelli R, Zambaldi L, Barlow J (2010) Community structure of dung beetles in Amazonian savannas: role of fire disturbance, vegetation and landscape structure. Land Ecol 25:631–641CrossRefGoogle Scholar
  87. MacArthur RH, Recher H, Cody M (1966) On the relation between habitat selection and species diversity. Am Nat 100:319–332CrossRefGoogle Scholar
  88. Madeira AJ, Fernandes WG (1999) Reprodutive phenology of sympatric taxa of Chamaecrista (Leguminosae) in Serra do Cipó, Brasil. J Trop Ecol 15:463–479CrossRefGoogle Scholar
  89. Malsch AKF, Fiala B, Maschwitz U, Mohamed M, Nais J, Linsenmair KE (2008) An analysis of declining ant species richness with increasing elevation at Mount Kinabalu, Sabah, Borneo. Asian Myrmecol 2:33–49Google Scholar
  90. McCain CM (2005) Elevational gradients in diversity of small mammals. Ecology 86:366–372CrossRefGoogle Scholar
  91. McCain CM (2007) Area and mammalian elevational diversity. Ecology 88:76–86PubMedCrossRefGoogle Scholar
  92. McCoy ED (1990) The distribution of insects along elevational gradients. Oikos 58:313–322CrossRefGoogle Scholar
  93. Melo-Júnior TA, Vasconcelos MF, Fernandes GW, Marini M (2001) Bird species distribution and conservation in Serra do Cipó, Minas Gerais, Brazil. Bird Cons Int 11:189–204Google Scholar
  94. Mendonça F, Danni-Oliveira IM (2007) Climatologia – Noções básicas e climas do Brasil. Oficina e Textos, São PauloGoogle Scholar
  95. Milanesi MA, Galvani E (2011) Efeito orográfico na Ilha de São Sebastião (Ilhabela – SP). Rev Bras Climatol 9:68–79Google Scholar
  96. Miura T, Matsumoto T (1997) Diet and nest material of the processional termite Hospitalitermes, and cohabitation of Termes (Isoptera, Termitidae) on Borneo Island. Ins Soc 44:267–275CrossRefGoogle Scholar
  97. Molina-Martinez A, León-Cortés JL, Regan HM (2013) Climatic and geometric constraints as driving factors of butterfly species richness along a neotropical elevational gradient. J Ins Cons 17:1169–1180CrossRefGoogle Scholar
  98. Mota NM, Rezende VL, Mota GS, Fernandes GW, Nunes YRF (2016) Driving forces along an altitudinal gradient in the regeneration component of the rupestrian grassland complex at Serra do Cipó, Brazil. Rev Braz Bot (in review)Google Scholar
  99. Munyai TC, Foord SH (2012) Ants on a mountain: spatial, environmental and habitat associations along an altitudinal transect in a centre of endemism. J Ins Cons 16:677–695CrossRefGoogle Scholar
  100. Navarro AGS (1992) Altitudinal distribution of birds in the Sierra Madre del Sur, Guerrero, Mexico. Condor 94:29–39CrossRefGoogle Scholar
  101. Needham JG, Frost SW, Tothill BH (1928) Leaf–mining insects. Williams and Williams, BaltimoreGoogle Scholar
  102. Nichols E, Spector S, Louzada J, Larsen T, Amezquita S, Favila ME (2008) Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biol Cons 141:1461–1474CrossRefGoogle Scholar
  103. Nichols E, Gardner TA, Peres S, Spector S (2009) Co–declines in large mammals and dung beetles: an impending ecological cascade. Oikos 118:481–487CrossRefGoogle Scholar
  104. Nunes CA (2015) Besouros rola-bostas (Coleoptera: Scarabaeidae: Scarabaeinae) e suas funções ecológicas ao longo de um gradiente altitudinal tropical. MSc Dissertation, Universidade Federal de Minas GeraisGoogle Scholar
  105. Pacheco R, Vasconcelos HL (2012) Habitat diversity enhances ant diversity in a naturally heterogeneous Brazilian landscape. Biodiv Cons 21:797–809CrossRefGoogle Scholar
  106. Palin OF, Eggleton P, Malhi Y, Girardin CAJ, Rozas-Dávila A, Parr CL (2011) Termite diversity along an Amazon-Andes elevation gradient, Peru. Biotropica 43:100–107CrossRefGoogle Scholar
  107. Pounds JA, Fogden MPL, Campbell JH (1999) Biological response to climate change on a tropical mountain. Nature 398:611–615CrossRefGoogle Scholar
  108. Pounds JA, Bustamante MR, Coloma LA, Consuegra JA, Fogden MPL, Foster PN, La Marca E, Masters KL, Merino-Viteri A, Puschendorf R, Ron SR, Sánchez-Azofeifa GA, Still CJ, Young BE (2006) Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439:161–167PubMedCrossRefGoogle Scholar
  109. Price PW (1991) Patterns in comunities along latitudinal gradients. In: Price PW, Lewinsohn TM, Fernandes GW, Benson WW (eds) Plant–animal interactions: evolutionary ecology in tropical and temperate regions. Wiley, New York, pp 51–69Google Scholar
  110. Price PW, Fernandes GW, Lara ACF, Brawn J, Barrios H, Wright MG, Ribeiro SP, Rothcliff N (1998) Global patterns in local number of insect galling species. J Biogeogr 25:581–592CrossRefGoogle Scholar
  111. Pyrcz TW, Wojtusiak J, Garlacz R (2009) Diversity and distribution patterns of Pronophilina butterflies (Lepidoptera: Nymphalidae: Satyrinae) along an altitudinal transect in North-Western Ecuador. Neotrop Entomol 38:716–726PubMedCrossRefGoogle Scholar
  112. Quintino AV (2014) Riqueza de espécies de térmitas e sua relação com a distribuição de recursos ao longo de um gradiente altimontano adverso nos trópicos. Dissertation, Universidade Estadual de Montes ClarosGoogle Scholar
  113. Rahbek C (2005) The role of spatial scale and the perception of large-scale species-richness patterns. Ecol Lett 8:224–239CrossRefGoogle Scholar
  114. Rapp JM, Silman MR (2012) Diurnal, seasonal, and altitudinal trends in microclimate across a tropical montane cloud forest. Clim Res 55:17–32CrossRefGoogle Scholar
  115. Ribas CR, Schoereder JH, Pic M, Soares SM (2003) Tree heterogeneity, resource availability, and larger scale processes regulating arboreal ant species richness. Aust Ecol 28:305–314CrossRefGoogle Scholar
  116. Ribeiro SP (2003) Insect herbivores in the canopies of savannas and rainforests. In: Basset Y, Novotny V, Miller S, Kitching R (eds) Arthropods of tropical forests: spatio-temporal dynamics and resource use in the canopy. Cambridge press, New York, pp 348–359Google Scholar
  117. Ribeiro KT, Fernandes GW (2000) Patterns of abundance of a narrow endemic species in a tropical and infertile montane habitat. Plant Ecol 147:205–218CrossRefGoogle Scholar
  118. Ribeiro SP, Pimenta HR, Fernandes GW (1994) Herbivory by chewing and sucking insects on Tabebuia ochracea. Biotropica 26:302–307CrossRefGoogle Scholar
  119. Ricklefs RE (2013) A economia da natureza. Guanabara Koogan, Rio de JaneiroGoogle Scholar
  120. Samson DA, Rickart EA, Gonzales PC (1997) Ant diversity and abundance along an elevational gradient in the Philippines. Biotropica 29:349–363CrossRefGoogle Scholar
  121. Sanchez-Rodriguez JF, Baz A (1995) The effects of elevation on the butterfly communities of a Mediterranean mountain, Sierra de Javalambre, central Spain. J Lepid Soc 49:192–207Google Scholar
  122. Sanders NJ, Lessard JP, Fitzpatrick MC, Dunn RR (2007) Temperature, but not productivity or geometry, predicts elevational diversity gradients in ants across spatial grains. Glob Ecol Biogeogr 16:640–649CrossRefGoogle Scholar
  123. Sang W (2009) Plant diversity patterns and their relationships with soil and climatic factors along an altitudinal gradient in the middle Tianshan Mountain area, Xinjiang, China. Ecol Res 24:303–314CrossRefGoogle Scholar
  124. Sawchik J, Dufrêne M, Lebrun P (2003) Estimation of habitat quality based on plant community, and effects of isolation in a network of butterfly habitat patches. Acta Oecol 24:25–33CrossRefGoogle Scholar
  125. Schnepf J (2010) Diversity of diurnal Lepidoptera across an elevational gradient above the timberline: a case study from the Austrian Alps. Dissertation, University WeinGoogle Scholar
  126. Schroter D, Cramer W, Leemans R, Prentice IC, Araujo MB, Arnell NW, Bondeau A, Bugmann H, Carter TR, Gracia CA, de la Vega-Leinert AC, Erhard M, Ewert F, Glendining M, House JI, Kankaanpaa S, Klein RJT, Lavorel S, Lindner M, Metzger MJ, Meyer J, Mitchell TD, Reginster I, Rounsevell M, Sabate S, Sitch S, Smith B, Smith J, Smith P, Sykes MT, Thonicke K, Thuiller W, Tuck G, Zaehle S, Zierl B (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310:1333–1337PubMedCrossRefGoogle Scholar
  127. Scott DA, Brooke M (1985) The endangered avifauna of southeastern Brazil: a report on the BOU/WWF expeditions of 1980/81 and 1981/82. ICBP Tech Pub 4:115–139Google Scholar
  128. Smith SE, Read JD (1997) Mycorrhizal symbiosis, 2nd edn. Academic press, New YorkGoogle Scholar
  129. Speight MR, Hunter MD, Watt AD (2008) Ecology of insects: concepts and applications, 2nd edn. Blackwell science, OxfordGoogle Scholar
  130. Stefanescu C, Herrando S, Páramo F (2004) Butterfly species richness in the north-west Mediterranean basin: the role of natural and human-induced factors. J Biogeogr 31:905–915CrossRefGoogle Scholar
  131. Stirnemann IA, Ikin K, Gibbons P, Blanchard W, Lindenmayer DB (2015) Measuring habitat heterogeneity reveals new insights into bird community composition. Oecologia 177:733–746PubMedCrossRefGoogle Scholar
  132. Stone GN, Schönrogge K, Atkinson RJ, Bellido D, Pujade-Villar J (2002) The population biology of oak gall wasps (Hymenoptera: Cynipidae). Annu Rev Entomol 47:633–668PubMedCrossRefGoogle Scholar
  133. Tantowijoyo W, Hoffman AA (2010) Identifying factors determining the altitudinal distribution of the invasive pest leafminers Liriomyza huidobrensis and Liriomyza sativae. Entomol Exp Appl 135:141–153CrossRefGoogle Scholar
  134. Tati-Subahar SS, Amasya AF, Choesin DN (2007) Butterfly (Lepidoptera: Hopalocera) distribution along an altitudinal gradient on mount Tangkuban Parahu, west Java, Indonesia. Raffles B Zool 55:175–178Google Scholar
  135. Terborgh J (1971) Distribution on environmental gradients: theory and a preliminary interpretation of distributional patterns in the avifauna of Cordillera Vilcabamba. Ecology 52:23–40CrossRefGoogle Scholar
  136. Terborgh J (1977) Bird species diversity on an Andean elevational gradient. Ecol 58:1007–1019CrossRefGoogle Scholar
  137. Thuiller W, Layorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102:8245–8250PubMedPubMedCentralCrossRefGoogle Scholar
  138. Vasconcelos MF, Lopes LE, Hoffmann D (2007) Dieta e comportamento deforrageamento de Oreophylax moreirae (Aves: Furnariidae) na Serra do Caraça, Minas Gerais, Brasil. Rev Bras Ornitol 15:439–442Google Scholar
  139. Veneklaas EJ, Van Ek R (1990) Rainfall interception in two tropical montane rain forests, Colombia. Hydrol Proc 4:311–326CrossRefGoogle Scholar
  140. Wang G, Zhou G, Yang L, Li Z (2002) Distribution species diversity and life-form spectra of plant communities along an altitudinal gradient in the northern slopes of Qilianshan Mountains, Gansu, China. Plant Ecol 165:169–181CrossRefGoogle Scholar
  141. Waring GL, Price PW (1990) Plant water stress and gall formation (Cecidomyiidae: Asphondylia spp.) on creosote bush. Ecol Entomol 15:87–95CrossRefGoogle Scholar
  142. Whitfield GH, Carruthers RI, Lampert EP, Haynes DL (1985) Spatial and temporal distribution of plant damage caused by the onion maggot (Diptera: Anthomyiidae). Environ Entomol 14:262–266CrossRefGoogle Scholar
  143. Whittaker RH (1956) Vegetation of the great Smoky Mountains. Ecol Monogr 26:1–80CrossRefGoogle Scholar
  144. Wilson RJ, Gutiérrez D, Gutiérrez J, Monserrat VJ (2007) An elevational shift in butterfly species richness and composition accompanying recent climate change. Glob Chan Biol 13:1873–1887CrossRefGoogle Scholar
  145. Wolda H (1987) Altitude, habitat and tropical insect diversity. Biol J Linn Soc 30:313–323CrossRefGoogle Scholar
  146. Wright MG, Sanways MJ (1996) Gall–insect species richness in African Fynbos and Karoo vegetation: the importance of plant species richness. Biodiv Lett 3:151–155CrossRefGoogle Scholar
  147. Wright MG, Sanways MJ (1998) Insect species richness in a diverse flora: gall–insects in the Cape Floristic Region, South Africa. Oecologia 115:427–433CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • G. Wilson Fernandes
    • 1
    • 2
  • Hernani A. Almeida
    • 1
  • Cássio A. Nunes
    • 1
  • João Henrique A. Xavier
    • 1
  • Neil S. Cobb
    • 3
  • Marco Antônio A. Carneiro
    • 4
  • Tatiana Cornelissen
    • 5
  • Frederico S. Neves
    • 6
  • Sérvio P. Ribeiro
    • 7
  • Yule Roberta F. Nunes
    • 8
  • Ana Carolina V. Pires
    • 1
  • Marina V. Beirão
    • 1
  1. 1.Ecologia Evolutiva & Biodiversidade/DBG, CP 486ICB/Universidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Department of BiologyStanford UniversityStanfordUSA
  3. 3.Merriam-Powell Center for Environmental Research Peterson HallNorthern Arizona UniversityFlagstaffUSA
  4. 4.Entomologia Ecológica/DEBIO, ICEBUniversidade Federal de Ouro PretoOuro PretoBrazil
  5. 5.Departamento de Ciências Naturais, Campus Dom BoscoUniversidade Federal de São João del-ReiSão João del-ReiBrazil
  6. 6.Departamento de Biologia GeralICB/Universidade Federal de Minas GeraisBelo HorizonteBrazil
  7. 7.EcologiaEvolutiva de Insetos de Dossel e Sucessão Natural/DEBIO, ICEBUniversidade Federal de Ouro PretoOuro PretoBrazil
  8. 8.Ecologia Vegetal/DBG, CP 126CCBS/Universidade Estadual de Montes ClarosMontes ClarosBrazil

Personalised recommendations