Advertisement

Immunobiology and Immune Based Therapies of Melanoma

  • David L. Chen
  • Cheryl ArmstrongEmail author
  • Mariah R. Brown
Chapter

Abstract

Despite efforts in preventative care, the incidence and mortality rate of melanoma have continued to rise. However, in the past decade, an increasing understanding of melanoma immunology has resulted in tremendous bench to bedside advancements in melanoma therapies. Many of these new treatment modalities have proven efficacious, leading to seven new melanoma therapies receiving FDA approval within the past 5 years. This chapter explores our current understanding of melanoma immunology, with an emphasis on tumor microenvironment and the ability of melanoma to evade immune surveillance. The remainder of the chapter focuses on how this understanding of melanoma immunology has been translated into clinical therapies. These agents include cytokines such as interleukin-2 and interferons, checkpoint inhibitors such as anti-CTLA4 and anti-PD1 antibodies, and vaccines. For each melanoma therapy, mechanism of action, efficacy, side effects, dosing strategy and future directions will be discussed.

Keywords

Cancer Melanoma Skin disease Immune based therapies T-lymphocytes Dendritic Cells Adhesion Molecules Chemotherapy Gangliosides Biochemotherapy 

Bibliography

  1. 1.
    American Cancer Society. Key statistics for melanoma skin cancer. 2016; http://www.cancer.org/cancer/skincancer-melanoma/detailedguide/melanoma-skin-cancer-key-statistics. Accessed July 20, 2016.
  2. 2.
    Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics, 2007. CA Cancer J Clin. 2007;57:43–66.PubMedCrossRefGoogle Scholar
  3. 3.
    Clark Jr WH, Elder DE, Guerry D, Epstein MN, Greene MH, Van Horn M. A study of tumor progression: the precursor lesions of superficial spreading and nodular melanoma. Hum Pathol. 1984;15:1147–65.PubMedCrossRefGoogle Scholar
  4. 4.
    Balch CM, Buzaid AC, Soong SJ, et al. Final version of the American Joint Committee on Cancer staging system for cutaneous melanoma. J Clin Oncol Off J Am Soc Clin Oncol. 2001;19:3635–48.CrossRefGoogle Scholar
  5. 5.
    Balch CM, Soong SJ, Atkins MB, et al. An evidence-based staging system for cutaneous melanoma. CA Cancer J Clin. 2004;54:131–49; quiz 82–4.PubMedCrossRefGoogle Scholar
  6. 6.
    Balch CM, Gershenwald JE, Soong SJ, et al. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol Off J Am Soc Clin Oncol. 2009;27:6199–206.CrossRefGoogle Scholar
  7. 7.
    Burgi A, Brodine S, Wegner S, et al. Incidence and risk factors for the occurrence of non-AIDS-defining cancers among human immunodeficiency virus-infected individuals. Cancer. 2005;104:1505–11.PubMedCrossRefGoogle Scholar
  8. 8.
    Rodrigues LK, Klencke BJ, Vin-Christian K, et al. Altered clinical course of malignant melanoma in HIV-positive patients. Arch Dermatol. 2002;138:765–70.PubMedCrossRefGoogle Scholar
  9. 9.
    Wilkins K, Turner R, Dolev JC, LeBoit PE, Berger TG, Maurer TA. Cutaneous malignancy and human immunodeficiency virus disease. J Am Acad Dermatol. 2006;54:189–206; quiz 7–10.PubMedCrossRefGoogle Scholar
  10. 10.
    Armstrong CA, Ansel JC. Immunology of malignant melanoma. Photochem Photobiol. 1996;63:418–20.PubMedCrossRefGoogle Scholar
  11. 11.
    Wagner SN, Schultewolter T, Wagner C, et al. Immune response against human primary malignant melanoma: a distinct cytokine mRNA profile associated with spontaneous regression. Lab Invest. 1998;78:541–50.PubMedGoogle Scholar
  12. 12.
    Mihm Jr MC, Clemente CG, Cascinelli N. Tumor infiltrating lymphocytes in lymph node melanoma metastases: a histopathologic prognostic indicator and an expression of local immune response. Lab Invest. 1996;74:43–7.PubMedGoogle Scholar
  13. 13.
    Kawakami Y, Zakut R, Topalian SL, Stotter H, Rosenberg SA. Shared human melanoma antigens. Recognition by tumor-infiltrating lymphocytes in HLA-A2.1-transfected melanomas. J Immunol. 1992;148:638–43.PubMedGoogle Scholar
  14. 14.
    Cebon J, MacGregor D, Scott A, DeBoer R. Immunotherapy of melanoma: targeting defined antigens. Australas J Dermatol. 1997;38 Suppl 1:S66–72.PubMedCrossRefGoogle Scholar
  15. 15.
    Topalian SL, Rivoltini L, Mancini M, et al. Human CD4+ T cells specifically recognize a shared melanoma-associated antigen encoded by the tyrosinase gene. Proc Natl Acad Sci U S A. 1994;91:9461–5.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Anichini A, Vegetti C, Mortarini R. The paradox of T-cell-mediated antitumor immunity in spite of poor clinical outcome in human melanoma. Cancer Immunol Immunother. 2004;53:855–64.PubMedCrossRefGoogle Scholar
  17. 17.
    Komenaka I, Hoerig H, Kaufman HL. Immunotherapy for melanoma. Clin Dermatol. 2004;22:251–65.PubMedCrossRefGoogle Scholar
  18. 18.
    Shevach EM. Regulatory T, cells in autoimmmunity*. Annu Rev Immunol. 2000;18:423–49.PubMedCrossRefGoogle Scholar
  19. 19.
    Antony PA, Restifo NP. CD4 + CD25+ T regulatory cells, immunotherapy of cancer, and interleukin-2. J Immunother. 2005;28:120–8.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Cesana GC, DeRaffele G, Cohen S, et al. Characterization of CD4 + CD25+ regulatory T cells in patients treated with high-dose interleukin-2 for metastatic melanoma or renal cell carcinoma. J Clin Oncol. 2006;24:1169–77.PubMedCrossRefGoogle Scholar
  21. 21.
    Gajewski TF, Woo SR, Zha Y, et al. Cancer immunotherapy strategies based on overcoming barriers within the tumor microenvironment. Curr Opin Immunol. 2013;25:268–76.PubMedCrossRefGoogle Scholar
  22. 22.
    Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med. 2010;207:2187–94.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Spranger S, Spaapen RM, Zha Y, et al. Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci Transl Med. 2013;5:200ra116.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Rouas-Freiss N, Bruel S, Menier C, Marcou C, Moreau P, Carosella ED. Switch of HLA-G alternative splicing in a melanoma cell line causes loss of HLA-G1 expression and sensitivity to NK lysis. Int J Cancer. 2005;117:114–22.PubMedCrossRefGoogle Scholar
  25. 25.
    Hill LL, Perussia B, McCue PA, Korngold R. Effect of human natural killer cells on the metastatic growth of human melanoma xenografts in mice with severe combined immunodeficiency. Cancer Res. 1994;54:763–70.PubMedGoogle Scholar
  26. 26.
    Enk AH, Jonuleit H, Saloga J, Knop J. Dendritic cells as mediators of tumor-induced tolerance in metastatic melanoma. Int J Cancer. 1997;73:309–16.PubMedCrossRefGoogle Scholar
  27. 27.
    Liu Y, Janeway Jr CA. Cells that present both specific ligand and costimulatory activity are the most efficient inducers of clonal expansion of normal CD4 T cells. Proc Natl Acad Sci U S A. 1992;89:3845–9.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Steinman RM. The dendritic cell system and its role in immunogenicity. Annu Rev Immunol. 1991;9:271–96.PubMedCrossRefGoogle Scholar
  29. 29.
    Becker Y. Dendritic cell activity against primary tumors: an overview. In Vivo. 1993;7:187–91.PubMedGoogle Scholar
  30. 30.
    Haass NK, Smalley KS, Li L, Herlyn M. Adhesion, migration and communication in melanocytes and melanoma. Pigment Cell Res. 2005;18:150–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Johnson JP. Cell adhesion molecules in the development and progression of malignant melanoma. Cancer Metastasis Rev. 1999;18:345–57.PubMedCrossRefGoogle Scholar
  32. 32.
    Sers C, Riethmuller G, Johnson JP. MUC18, a melanoma-progression associated molecule, and its potential role in tumor vascularization and hematogenous spread. Cancer Res. 1994;54:5689–94.PubMedGoogle Scholar
  33. 33.
    Shih IM, Elder DE, Speicher D, Johnson JP, Herlyn M. Isolation and functional characterization of the A32 melanoma-associated antigen. Cancer Res. 1994;54:2514–20.PubMedGoogle Scholar
  34. 34.
    Lehmann JM, Holzmann B, Breitbart EW, Schmiegelow P, Riethmuller G, Johnson JP. Discrimination between benign and malignant cells of melanocytic lineage by two novel antigens, a glycoprotein with a molecular weight of 113,000 and a protein with a molecular weight of 76,000. Cancer Res. 1987;47:841–5.PubMedGoogle Scholar
  35. 35.
    Yang H, Wang S, Liu Z, et al. Isolation and characterization of mouse MUC18 cDNA gene, and correlation of MUC18 expression in mouse melanoma cell lines with metastatic ability. Gene. 2001;265:133–45.PubMedCrossRefGoogle Scholar
  36. 36.
    Brocker EB, Suter L, Bruggen J, Ruiter DJ, Macher E, Sorg C. Phenotypic dynamics of tumor progression in human malignant melanoma. Int J Cancer. 1985;36:29–35.PubMedCrossRefGoogle Scholar
  37. 37.
    Luca M, Hunt B, Bucana CD, Johnson JP, Fidler IJ, Bar-Eli M. Direct correlation between MUC18 expression and metastatic potential of human melanoma cells. Melanoma Res. 1993;3:35–41.PubMedCrossRefGoogle Scholar
  38. 38.
    Melnikova VO, Bar-Eli M. Bioimmunotherapy for melanoma using fully human antibodies targeting MCAM/MUC18 and IL-8. Pigment Cell Res. 2006;19:395–405.PubMedCrossRefGoogle Scholar
  39. 39.
    Armstrong C, Luger T, Ansel J. Cytokines and malignant melanoma. In: Mukhtar H, editor. Skin cancer: mechanisms and human relevance. Boca Raton: FL CRC Press; 1995. p. 273–80.Google Scholar
  40. 40.
    Rodeck U, Melber K, Kath R, et al. Constitutive expression of multiple growth factor genes by melanoma cells but not normal melanocytes. J Invest Dermatol. 1991;97:20–6.PubMedCrossRefGoogle Scholar
  41. 41.
    Halaban R, Langdon R, Birchall N, et al. Basic fibroblast growth factor from human keratinocytes is a natural mitogen for melanocytes. J Cell Biol. 1988;107:1611–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Colombo MP, Maccalli C, Mattei S, Melani C, Radrizzani M, Parmiani G. Expression of cytokine genes, including IL-6, in human malignant melanoma cell lines. Melanoma Res. 1992;2:181–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Armstrong CA, Tara DC, Hart CE, Kock A, Luger TA, Ansel JC. Heterogeneity of cytokine production by human malignant melanoma cells. Exp Dermatol. 1992;1:37–45.PubMedCrossRefGoogle Scholar
  44. 44.
    Lazar-Molnar E, Hegyesi H, Toth S, Falus A. Autocrine and paracrine regulation by cytokines and growth factors in melanoma. Cytokine. 2000;12:547–54.PubMedCrossRefGoogle Scholar
  45. 45.
    Lu C, Kerbel RS. Interleukin-6 undergoes transition from paracrine growth inhibitor to autocrine stimulator during human melanoma progression. J Cell Biol. 1993;120:1281–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Schadendorf D, Moller A, Algermissen B, Worm M, Sticherling M, Czarnetzki BM. IL-8 produced by human malignant melanoma cells in vitro is an essential autocrine growth factor. J Immunol. 1993;151:2667–75.PubMedGoogle Scholar
  47. 47.
    Hensley C, Spitzler S, McAlpine BE, et al. In vivo human melanoma cytokine production: inverse correlation of GM-CSF production with tumor depth. Exp Dermatol. 1998;7:335–41.PubMedCrossRefGoogle Scholar
  48. 48.
    Singh RK, Gutman M, Radinsky R, Bucana CD, Fidler IJ. Expression of interleukin 8 correlates with the metastatic potential of human melanoma cells in nude mice. Cancer Res. 1994;54:3242–7.PubMedGoogle Scholar
  49. 49.
    Dudley ME, Wunderlich JR, Yang JC, et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol Off J Am Soc Clin Oncol. 2005;23:2346–57.CrossRefGoogle Scholar
  50. 50.
    Wahl S. Regulation of tissue inflammation, repair, and fibrosis by transforming growth factor beta. In: Luger TA, Schwarz T, editors. Epidermal growth factors and cytokines. New York: M. Dekker; 1994. p. 241–52.Google Scholar
  51. 51.
    Pittelkow MR, Shipley GD. Serum-free culture of normal human melanocytes: growth kinetics and growth factor requirements. J Cell Physiol. 1989;140:565–76.PubMedCrossRefGoogle Scholar
  52. 52.
    Rodeck U, Bossler A, Graeven U, et al. Transforming growth factor beta production and responsiveness in normal human melanocytes and melanoma cells. Cancer Res. 1994;54:575–81.PubMedGoogle Scholar
  53. 53.
    Mattei S, Colombo MP, Melani C, Silvani A, Parmiani G, Herlyn M. Expression of cytokine/growth factors and their receptors in human melanoma and melanocytes. Int J Cancer. 1994;56:853–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Sabatini M, Chavez J, Mundy GR, Bonewald LF. Stimulation of tumor necrosis factor release from monocytic cells by the A375 human melanoma via granulocyte-macrophage colony-stimulating factor. Cancer Res. 1990;50:2673–8.PubMedGoogle Scholar
  55. 55.
    Armstrong CA, Botella R, Galloway TH, et al. Antitumor effects of granulocyte-macrophage colony-stimulating factor production by melanoma cells. Cancer Res. 1996;56:2191–8.PubMedGoogle Scholar
  56. 56.
    Dranoff G, Jaffee E, Lazenby A, et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci U S A. 1993;90:3539–43.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Yue FY, Dummer R, Geertsen R, et al. Interleukin-10 is a growth factor for human melanoma cells and down-regulates HLA class-I, HLA class-II and ICAM-1 molecules. Int J Cancer. 1997;71:630–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Margolin K. Introduction to the role of the immune system in melanoma. Hematol Oncol Clin North Am. 2014;28:537–58.PubMedCrossRefGoogle Scholar
  59. 59.
    Ullrich SE, Byrne SN. The immunologic revolution: photoimmunology. J Invest Dermatol. 2012;132:896–905.PubMedCrossRefGoogle Scholar
  60. 60.
    Dummer W, Becker JC, Schwaaf A, Leverkus M, Moll T, Brocker EB. Elevated serum levels of interleukin-10 in patients with metastatic malignant melanoma. Melanoma Res. 1995;5:67–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Chen WF, Zlotnik A. IL-10: a novel cytotoxic T cell differentiation factor. J Immunol. 1991;147:528–34.PubMedGoogle Scholar
  62. 62.
    Kirkin AF, Dzhandzhugazyan K, Zeuthen J. The immunogenic properties of melanoma-associated antigens recognized by cytotoxic T lymphocytes. Exp Clin Immunogenet. 1998;15:19–32.PubMedCrossRefGoogle Scholar
  63. 63.
    Anichini A, Maccalli C, Mortarini R, et al. Melanoma cells and normal melanocytes share antigens recognized by HLA-A2-restricted cytotoxic T cell clones from melanoma patients. J Exp Med. 1993;177:989–98.PubMedCrossRefGoogle Scholar
  64. 64.
    Theos AC, Truschel ST, Raposo G, Marks MS. The Silver locus product Pmel17/gp100/Silv/ME20: controversial in name and in function. Pigment Cell Res. 2005;18:322–36.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Sakai C, Kawakami Y, Law LW, Furumura M, Hearing Jr VJ. Melanosomal proteins as melanoma-specific immune targets. Melanoma Res. 1997;7:83–95.PubMedCrossRefGoogle Scholar
  66. 66.
    Zhai Y, Yang JC, Spiess P, et al. Cloning and characterization of the genes encoding the murine homologues of the human melanoma antigens MART1 and gp100. J Immunother. 1997;20:15–25.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Coulie PG, Brichard V, Van Pel A, et al. A new gene coding for a differentiation antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J Exp Med. 1994;180:35–42.PubMedCrossRefGoogle Scholar
  68. 68.
    Kawakami Y, Eliyahu S, Delgado CH, et al. Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T cells infiltrating into tumor. Proc Natl Acad Sci U S A. 1994;91:3515–9.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Romero P, Valmori D, Pittet MJ, et al. Antigenicity and immunogenicity of Melan-A/MART-1 derived peptides as targets for tumor reactive CTL in human melanoma. Immunol Rev. 2002;188:81–96.PubMedCrossRefGoogle Scholar
  70. 70.
    Chambost H, Brasseur F, Coulie P, et al. A tumour-associated antigen expression in human haematological malignancies. Br J Haematol. 1993;84:524–6.PubMedCrossRefGoogle Scholar
  71. 71.
    Rimoldi D, Romero P, Carrel S. The human melanoma antigen-encoding gene, MAGE-1, is expressed by other tumour cells of neuroectodermal origin such as glioblastomas and neuroblastomas. Int J Cancer. 1993;54:527–8.PubMedCrossRefGoogle Scholar
  72. 72.
    De Smet C, Lurquin C, van der Bruggen P, De Plaen E, Brasseur F, Boon T. Sequence and expression pattern of the human MAGE2 gene. Immunogenetics. 1994;39:121–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Brasseur F, Marchand M, Vanwijck R, et al. Human gene MAGE-1, which codes for a tumor-rejection antigen, is expressed by some breast tumors. Int J Cancer. 1992;52:839–41.PubMedCrossRefGoogle Scholar
  74. 74.
    Brasseur F, Rimoldi D, Lienard D, et al. Expression of MAGE genes in primary and metastatic cutaneous melanoma. Int J Cancer. 1995;63:375–80.PubMedCrossRefGoogle Scholar
  75. 75.
    Roeder C, Schuler-Thurner B, Berchtold S, et al. MAGE-A3 is a frequent tumor antigen of metastasized melanoma. Arch Dermatol Res. 2005;296:314–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Mukerjee S, Nasoff M, McKnight M, Glassy M. Characterization of human IgG1 monoclonal antibody against gangliosides expressed on tumor cells. Hybridoma. 1998;17:133–42.PubMedCrossRefGoogle Scholar
  77. 77.
    Hakomori S. Aberrant glycosylation in cancer cell membranes as focused on glycolipids: overview and perspectives. Cancer Res. 1985;45:2405–14.PubMedGoogle Scholar
  78. 78.
    Hamilton WB, Helling F, Lloyd KO, Livingston PO. Ganglioside expression on human malignant melanoma assessed by quantitative immune thin-layer chromatography. Int J Cancer. 1993;53:566–73.PubMedCrossRefGoogle Scholar
  79. 79.
    Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64:9–29.PubMedCrossRefGoogle Scholar
  80. 80.
    Jack A, Boyes C, Aydin N, Alam K, Wallack M. The treatment of melanoma with an emphasis on immunotherapeutic strategies. Surg Oncol. 2006;15:13–24.PubMedCrossRefGoogle Scholar
  81. 81.
    Morton DL, Thompson JF, Cochran AJ, et al. Sentinel-node biopsy or nodal observation in melanoma. N Engl J Med. 2006;355:1307–17.PubMedCrossRefGoogle Scholar
  82. 82.
    McMasters KM, Reintgen DS, Ross MI, et al. Sentinel lymph node biopsy for melanoma: controversy despite widespread agreement. J Clin Oncol Off J Am Soc Clin Oncol. 2001;19:2851–5.CrossRefGoogle Scholar
  83. 83.
    Morton DL, Cochran AJ, Thompson JF, et al. Sentinel node biopsy for early-stage melanoma: accuracy and morbidity in MSLT-I, an international multicenter trial. Ann Surg. 2005;242:302–11; discussion 11–3.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Balch CM, Morton DL, Gershenwald JE, et al. Sentinel node biopsy and standard of care for melanoma. J Am Acad Dermatol. 2009;60:872–5.PubMedCrossRefGoogle Scholar
  85. 85.
    Wong SL, Balch CM, Hurley P, et al. Sentinel lymph node biopsy for melanoma: American Society of Clinical Oncology and Society of Surgical Oncology joint clinical practice guideline. J Clin Oncol Off J Am Soc Clin Oncol. 2012;30:2912–8.CrossRefGoogle Scholar
  86. 86.
    Morton DL, Wanek L, Nizze JA, Elashoff RM, Wong JH. Improved long-term survival after lymphadenectomy of melanoma metastatic to regional nodes. Analysis of prognostic factors in 1134 patients from the John Wayne Cancer Clinic. Ann Surg. 1991;214:491–9; discussion 9–501.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Morton DL, Wen DR, Wong JH, et al. Technical details of intraoperative lymphatic mapping for early stage melanoma. Arch Surg. 1992;127:392–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Morton DL, Thompson JF, Cochran AJ, et al. Final trial report of sentinel-node biopsy versus nodal observation in melanoma. N Engl J Med. 2014;370:599–609.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Balch CM, Cascinelli N. Sentinel-node biopsy in melanoma. N Engl J Med. 2006;355:1370–1.PubMedCrossRefGoogle Scholar
  90. 90.
    Sondak VK, Zager JS. Melanoma: MSLT-1--putting sentinel lymph node biopsy into context. Nat Rev Clin Oncol. 2014;11:246–8.PubMedCrossRefGoogle Scholar
  91. 91.
    Johnson TM, Sondak VK, Bichakjian CK, Sabel MS. The role of sentinel lymph node biopsy for melanoma: evidence assessment. J Am Acad Dermatol. 2006;54:19–27.PubMedCrossRefGoogle Scholar
  92. 92.
    Houghton AN LS, Bajorin DF. Chemotherapy for metastatic melanoma. In: CM Balch AH, GW Milton, AJ Sober, SJ Soong, ed. Cutaneous Melanoma. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 1994Google Scholar
  93. 93.
    Huncharek M, Caubet JF, McGarry R. Single-agent DTIC versus combination chemotherapy with or without immunotherapy in metastatic melanoma: a meta-analysis of 3273 patients from 20 randomized trials. Melanoma Res. 2001;11:75–81.PubMedCrossRefGoogle Scholar
  94. 94.
    Middleton MR, Grob JJ, Aaronson N, et al. Randomized phase III study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma. J Clin Oncol Off J Am Soc Clin Oncol. 2000;18:158–66.CrossRefGoogle Scholar
  95. 95.
    Agarwala SS, Kirkwood JM. Temozolomide, a novel alkylating agent with activity in the central nervous system, may improve the treatment of advanced metastatic melanoma. Oncologist. 2000;5:144–51.PubMedCrossRefGoogle Scholar
  96. 96.
    Chaudhuri S, Das D, Chowdhury S, Gupta AD. Primary malignant melanoma of the vagina: a case report and review of literature. South Asian J Cancer. 2013;2:4.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Papadatos-Pastos D, Januszewski A, Dalgleish A. Revisiting the role of systemic therapies in patients with metastatic melanoma to the CNS. Expert Rev Anticancer Ther. 2013;13:559–67.PubMedCrossRefGoogle Scholar
  98. 98.
    Curtin JA, Fridlyand J, Kageshita T, et al. Distinct sets of genetic alterations in melanoma. N Engl J Med. 2005;353:2135–47.PubMedCrossRefGoogle Scholar
  99. 99.
    Chapman PB, Hauschild A, Robert C, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364:2507–16.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Flaherty KT, McArthur G. BRAF, a target in melanoma: implications for solid tumor drug development. Cancer. 2010;116:4902–13.PubMedCrossRefGoogle Scholar
  101. 101.
    Sosman JA, Kim KB, Schuchter L, et al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med. 2012;366:707–14.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Hauschild A, Grob JJ, Demidov LV, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012;380:358–65.PubMedCrossRefGoogle Scholar
  103. 103.
    Chapman PB. Mechanisms of resistance to RAF inhibition in melanomas harboring a BRAF mutation. Am Soc Clin Oncol Educ Book / Am Soc Clin Oncol Meeting. 2013;1:e80–e2.Google Scholar
  104. 104.
    Flaherty KT, Robert C, Hersey P, et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med. 2012;367:107–14.PubMedCrossRefGoogle Scholar
  105. 105.
    Flaherty KT, Infante JR, Daud A, et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med. 2012;367:1694–703.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Rahman A. Vemurafenib and cobimetinib in BRAF-mutated melanoma. Lancet Oncol. 2014;15:e535.PubMedCrossRefGoogle Scholar
  107. 107.
    Richman J, Martin-Liberal J, Diem S, Larkin J. BRAF and MEK inhibition for the treatment of advanced BRAF mutant melanoma. Expert Opin Pharmacother. 2015;16:1285–97.PubMedCrossRefGoogle Scholar
  108. 108.
    Guilhot F. Indications for imatinib mesylate therapy and clinical management. Oncologist. 2004;9:271–81.PubMedCrossRefGoogle Scholar
  109. 109.
    Cho JH, Kim KM, Kwon M, Kim JH, Lee J. Nilotinib in patients with metastatic melanoma harboring KIT gene aberration. Invest New Drugs. 2012;30:2008–14.PubMedCrossRefGoogle Scholar
  110. 110.
    Carvajal RD, Antonescu CR, Wolchok JD, et al. KIT as a therapeutic target in metastatic melanoma. JAMA. 2011;305:2327–34.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Garbe C, Bauer J Melanoma. In: Bolognia J, Jorizzo J, Schaffer J, eds. Dermatology. 3rd ed., Vol. 2, Philadelphia: Elsevier Saunders; 2012.Google Scholar
  112. 112.
    Kim KB, Sosman JA, Fruehauf JP, et al. BEAM: a randomized phase II study evaluating the activity of bevacizumab in combination with carboplatin plus paclitaxel in patients with previously untreated advanced melanoma. J Clin Oncol Off J Am Soc Clin Oncol. 2012;30:34–41.CrossRefGoogle Scholar
  113. 113.
    Graells J, Vinyals A, Figueras A, et al. Overproduction of VEGF concomitantly expressed with its receptors promotes growth and survival of melanoma cells through MAPK and PI3K signaling. J Invest Dermatol. 2004;123:1151–61.PubMedCrossRefGoogle Scholar
  114. 114.
    Barth A, Morton DL. The role of adjuvant therapy in melanoma management. Cancer. 1995;75:726–34.PubMedCrossRefGoogle Scholar
  115. 115.
    Molife R, Hancock BW. Adjuvant therapy of malignant melanoma. Crit Rev Oncol Hematol. 2002;44:81–102.PubMedCrossRefGoogle Scholar
  116. 116.
    Verma S, Quirt I, McCready D, Bak K, Charette M, Iscoe N. Systematic review of systemic adjuvant therapy for patients at high risk for recurrent melanoma. Cancer. 2006;106:1431–42.PubMedCrossRefGoogle Scholar
  117. 117.
    Pardoll DM. Cancer vaccines. Nat Med. 1998;4:525–31.PubMedCrossRefGoogle Scholar
  118. 118.
    Perales MA, Chapman PB. Immunizing against partially defined antigen mixtures, gangliosides, or peptides to induce antibody, T cell, and clinical responses. Cancer Chemother Biol Response Modif. 2005;22:749–60.PubMedCrossRefGoogle Scholar
  119. 119.
    Carreno BM, Magrini V, Becker-Hapak M, et al. Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science. 2015;348(6236):803–8.Google Scholar
  120. 120.
    Rietschel P, Chapman PB. Immunotherapy of melanoma. Hematol Oncol Clin North Am. 2006;20:751–66.PubMedCrossRefGoogle Scholar
  121. 121.
    Atkins MB. Cytokine-based therapy and biochemotherapy for advanced melanoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2006;12:2353s–8.CrossRefGoogle Scholar
  122. 122.
    Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Tepper RI, Pattengale PK, Leder P. Murine interleukin-4 displays potent anti-tumor activity in vivo. Cell. 1989;57:503–12.PubMedCrossRefGoogle Scholar
  124. 124.
    Colombo MP, Ferrari G, Stoppacciaro A, et al. Granulocyte colony-stimulating factor gene transfer suppresses tumorigenicity of a murine adenocarcinoma in vivo. J Exp Med. 1991;173:889–97.PubMedCrossRefGoogle Scholar
  125. 125.
    Gansbacher B, Zier K, Daniels B, Cronin K, Bannerji R, Gilboa E. Interleukin 2 gene transfer into tumor cells abrogates tumorigenicity and induces protective immunity. J Exp Med. 1990;172:1217–24.PubMedCrossRefGoogle Scholar
  126. 126.
    Golumbek PT, Lazenby AJ, Levitsky HI, et al. Treatment of established renal cancer by tumor cells engineered to secrete interleukin-4. Science. 1991;254:713–6.PubMedCrossRefGoogle Scholar
  127. 127.
    Fearon ER, Pardoll DM, Itaya T, et al. Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response. Cell. 1990;60:397–403.PubMedCrossRefGoogle Scholar
  128. 128.
    Armstrong CA, Murray N, Kennedy M, Koppula SV, Tara D, Ansel JC. Melanoma-derived interleukin 6 inhibits in vivo melanoma growth. J Invest Dermatol. 1994;102:278–84.PubMedCrossRefGoogle Scholar
  129. 129.
    Tepper RI, Mule JJ. Experimental and clinical studies of cytokine gene-modified tumor cells. Hum Gene Ther. 1994;5:153–64.PubMedCrossRefGoogle Scholar
  130. 130.
    Simons JW, Mikhak B. Ex-vivo gene therapy using cytokine-transduced tumor vaccines: molecular and clinical pharmacology. Semin Oncol. 1998;25:661–76.PubMedGoogle Scholar
  131. 131.
    Gansbacher B, Bannerji R, Daniels B, Zier K, Cronin K, Gilboa E. Retroviral vector-mediated gamma-interferon gene transfer into tumor cells generates potent and long lasting antitumor immunity. Cancer Res. 1990;50:7820–5.PubMedGoogle Scholar
  132. 132.
    Atkins MB, Robertson MJ, Gordon M, et al. Phase I evaluation of intravenous recombinant human interleukin 12 in patients with advanced malignancies. Clin Cancer Res Off J Am Assoc Cancer Res. 1997;3:409–17.Google Scholar
  133. 133.
    Rudman SM, Jameson MB, McKeage MJ, et al. A phase 1 study of AS1409, a novel antibody-cytokine fusion protein, in patients with malignant melanoma or renal cell carcinoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2011;17:1998–2005.CrossRefGoogle Scholar
  134. 134.
    Gollob JA, Mier JW, Veenstra K, et al. Phase I trial of twice-weekly intravenous interleukin 12 in patients with metastatic renal cell cancer or malignant melanoma: ability to maintain IFN-gamma induction is associated with clinical response. Clin Cancer Res Off J Am Assoc Cancer Res. 2000;6:1678–92.Google Scholar
  135. 135.
    Daud AI, DeConti RC, Andrews S, et al. Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26:5896–903.CrossRefGoogle Scholar
  136. 136.
    Kirkwood J, Kefford R, Logan T, Mainwaring PN, Millward M, Pavlick AC, Dar MM, Kathman S, Laubscher K, Bell W. Phase II trial of iboctadekin (rhIL-18) on a daily X 5 schedule in metastatic melanoma (MM). J Clin Oncol: 2006 ASCO Annu Meet Proc Part I. 2006;24:10043.Google Scholar
  137. 137.
    Tarhini AA, Millward M, Mainwaring P, et al. A phase 2, randomized study of SB-485232, rhIL-18, in patients with previously untreated metastatic melanoma. Cancer. 2009;115:859–68.PubMedCrossRefGoogle Scholar
  138. 138.
    Atkins MB, Lotze MT, Dutcher JP, et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol Off J Am Soc Clin Oncol. 1999;17:2105–16.CrossRefGoogle Scholar
  139. 139.
    Atkins MB, Kunkel L, Sznol M, Rosenberg SA. High-dose recombinant interleukin-2 therapy in patients with metastatic melanoma: long-term survival update. Cancer J Sci Am. 2000;6 Suppl 1:S11–4.PubMedGoogle Scholar
  140. 140.
    Phan GQ, Attia P, Steinberg SM, White DE, Rosenberg SA. Factors associated with response to high-dose interleukin-2 in patients with metastatic melanoma. J Clin Oncol Off J Am Soc Clin Oncol. 2001;19:3477–82.CrossRefGoogle Scholar
  141. 141.
    Boasberg PD, Hoon DS, Piro LD, et al. Enhanced survival associated with vitiligo expression during maintenance biotherapy for metastatic melanoma. J Invest Dermatol. 2006;126:2658–63.PubMedCrossRefGoogle Scholar
  142. 142.
    Ahmadzadeh M, Rosenberg SA. IL-2 administration increases CD4+ CD25(hi) Foxp3+ regulatory T cells in cancer patients. Blood. 2006;107:2409–14.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Therasse P, Eisenhauer EA, Verweij J. RECIST revisited: a review of validation studies on tumour assessment. Eur J Cancer. 2006;42:1031–9.PubMedCrossRefGoogle Scholar
  144. 144.
    Temple-Oberle CF, Byers BA, Hurdle V, Fyfe A, McKinnon JG. Intra-lesional interleukin-2 therapy for in transit melanoma. J Surg Oncol. 2014;109:327–31.PubMedCrossRefGoogle Scholar
  145. 145.
    Kirkwood JM, Strawderman MH, Ernstoff MS, Smith TJ, Borden EC, Blum RH. Interferon alfa-2b adjuvant therapy of high-risk resected cutaneous melanoma: the Eastern Cooperative Oncology Group Trial EST 1684. J Clin Oncol Off J Am Soc Clin Oncol. 1996;14:7–17.CrossRefGoogle Scholar
  146. 146.
    Kirkwood JM, Ibrahim JG, Sondak VK, et al. High- and low-dose interferon alfa-2b in high-risk melanoma: first analysis of intergroup trial E1690/S9111/C9190. J Clin Oncol Off J Am Soc Clin Oncol. 2000;18:2444–58.CrossRefGoogle Scholar
  147. 147.
    Kirkwood JM, Manola J, Ibrahim J, Sondak V, Ernstoff MS, Rao U. A pooled analysis of eastern cooperative oncology group and intergroup trials of adjuvant high-dose interferon for melanoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2004;10:1670–7.CrossRefGoogle Scholar
  148. 148.
    Eggermont AM, Suciu S, MacKie R, et al. Post-surgery adjuvant therapy with intermediate doses of interferon alfa 2b versus observation in patients with stage IIb/III melanoma (EORTC 18952): randomised controlled trial. Lancet. 2005;366:1189–96.PubMedCrossRefGoogle Scholar
  149. 149.
    Kleeberg UR, Suciu S, Brocker EB, et al. Final results of the EORTC 18871/DKG 80-1 randomised phase III trial. rIFN-alpha2b versus rIFN-gamma versus ISCADOR M versus observation after surgery in melanoma patients with either high-risk primary (thickness >3 mm) or regional lymph node metastasis. Eur J Cancer. 2004;40:390–402.PubMedCrossRefGoogle Scholar
  150. 150.
    Hancock BW, Wheatley K, Harris S, et al. Adjuvant interferon in high-risk melanoma: the AIM HIGH Study--United Kingdom Coordinating Committee on Cancer Research randomized study of adjuvant low-dose extended-duration interferon Alfa-2a in high-risk resected malignant melanoma. J Clin Oncol Off J Am Soc Clin Oncol. 2004;22:53–61.CrossRefGoogle Scholar
  151. 151.
    Kubo H, Ashida A, Matsumoto K, Kageshita T, Yamamoto A, Saida T. Interferon-beta therapy for malignant melanoma: the dose is crucial for inhibition of proliferation and induction of apoptosis of melanoma cells. Arch Dermatol Res. 2008;300:297–301.PubMedCrossRefGoogle Scholar
  152. 152.
    Matsumoto K, Kubo H, Murata H, et al. A pilot study of human interferon beta gene therapy for patients with advanced melanoma by in vivo transduction using cationic liposomes. Jpn J Clin Oncol. 2008;38:849–56.PubMedCrossRefGoogle Scholar
  153. 153.
  154. 154.
    Avigan D. Dendritic cells: development, function and potential use for cancer immunotherapy. Blood Rev. 1999;13:51–64.PubMedCrossRefGoogle Scholar
  155. 155.
    Spitler LE, Grossbard ML, Ernstoff MS, et al. Adjuvant therapy of stage III and IV malignant melanoma using granulocyte-macrophage colony-stimulating factor. J Clin Oncol Off J Am Soc Clin Oncol. 2000;18:1614–21.CrossRefGoogle Scholar
  156. 156.
    de Gast GC, Klumpen HJ, Vyth-Dreese FA, et al. Phase I trial of combined immunotherapy with subcutaneous granulocyte macrophage colony-stimulating factor, low-dose interleukin 2, and interferon alpha in progressive metastatic melanoma and renal cell carcinoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2000;6:1267–72.Google Scholar
  157. 157.
    Hoeller C, Jansen B, Heere-Ress E, et al. Perilesional injection of r-GM-CSF in patients with cutaneous melanoma metastases. J Invest Dermatol. 2001;117:371–4.PubMedCrossRefGoogle Scholar
  158. 158.
    Si Z, Hersey P, Coates AS. Clinical responses and lymphoid infiltrates in metastatic melanoma following treatment with intralesional GM-CSF. Melanoma Res. 1996;6:247–55.PubMedCrossRefGoogle Scholar
  159. 159.
    Luiten RM, Kueter EW, Mooi W, et al. Immunogenicity, including vitiligo, and feasibility of vaccination with autologous GM-CSF-transduced tumor cells in metastatic melanoma patients. J Clin Oncol Off J Am Soc Clin Oncol. 2005;23:8978–91.CrossRefGoogle Scholar
  160. 160.
    Woodmansee C, Pillow J, Skinner Jr RB. The role of topical immune response modifiers in skin cancer. Drugs. 2006;66:1657–64.PubMedCrossRefGoogle Scholar
  161. 161.
    Schon MP, Wienrich BG, Drewniok C, et al. Death receptor-independent apoptosis in malignant melanoma induced by the small-molecule immune response modifier imiquimod. J Invest Dermatol. 2004;122:1266–76.PubMedCrossRefGoogle Scholar
  162. 162.
    Ly L, Kelly JW, O’Keefe R, et al. Efficacy of imiquimod cream, 5 %, for lentigo maligna after complete excision: a study of 43 patients. Arch Dermatol. 2011;147:1191–5.PubMedCrossRefGoogle Scholar
  163. 163.
    Micali G, Lacarrubba F, Nasca MR, Ferraro S, Schwartz RA. Topical pharmacotherapy for skin cancer: part II. Clinical applications. J Am Acad Dermatol. 2014;70:979.e1–12; quiz 9912.CrossRefGoogle Scholar
  164. 164.
    Rajpar SF, Marsden JR. Imiquimod in the treatment of lentigo maligna. Br J Dermatol. 2006;155:653–6.PubMedCrossRefGoogle Scholar
  165. 165.
    Naylor MF, Crowson N, Kuwahara R, et al. Treatment of lentigo maligna with topical imiquimod. Br J Dermatol. 2003;149 Suppl 66:66–70.PubMedCrossRefGoogle Scholar
  166. 166.
    Tzellos T, Kyrgidis A, Mocellin S, Chan AW, Pilati P, Apalla Z. Interventions for melanoma in situ, including lentigo maligna. Cochrane Database Syst Rev. 2014;(12):CD010308.Google Scholar
  167. 167.
    Arbiser JL, Bips M, Seidler A, Bonner MY, Kovach C. Combination therapy of imiquimod and gentian violet for cutaneous melanoma metastases. J Am Acad Dermatol. 2012;67:e81–3.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Jung JY, Kim HS, Roh MR, Roh HJ, Lee SY, Chung KY. The effect of imiquimod on matrix metalloproteinases and tissue inhibitors of metalloproteinases in malignant melanoma cell invasion. Ann Dermatol. 2014;26:363–73.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Maverakis E, Cornelius LA, Bowen GM, et al. Metastatic melanoma – a review of current and future treatment options. Acta Derm Venereol. 2015;95(5):516–24.PubMedCrossRefGoogle Scholar
  170. 170.
    Rosenberg SA, Yang JC, Schwartzentruber DJ, et al. Prospective randomized trial of the treatment of patients with metastatic melanoma using chemotherapy with cisplatin, dacarbazine, and tamoxifen alone or in combination with interleukin-2 and interferon alfa-2b. J Clin Oncol Off J Am Soc Clin Oncol. 1999;17:968–75.CrossRefGoogle Scholar
  171. 171.
    Keilholz U, Goey SH, Punt CJ, et al. Interferon alfa-2a and interleukin-2 with or without cisplatin in metastatic melanoma: a randomized trial of the European Organization for Research and Treatment of Cancer Melanoma Cooperative Group. J Clin Oncol Off J Am Soc Clin Oncol. 1997;15:2579–88.CrossRefGoogle Scholar
  172. 172.
    Atkins MB, Hsu J, Lee S et al. Phase III trial comparing concurrent biochemotherapy with cisplatin, vinblastine, dacarbazine, interleukin-2, and interferon alfa-2b with cisplatin, vinblastine, and dacarbazine alone in patients with metastatic malignant melanoma (E3695): a trial coordinated by the Eastern Cooperative Oncology Group. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2008;26(35):5748–54Google Scholar
  173. 173.
    Sasse AD, Sasse EC, Clark LG, Ulloa L, Clark OA. Chemoimmunotherapy versus chemotherapy for metastatic malignant melanoma. The Cochrane Database Syst Rev. 2007;(1):CD005413.Google Scholar
  174. 174.
    Krummel MF, Allison JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med. 1995;182:459–65.PubMedCrossRefGoogle Scholar
  175. 175.
    Smith-Garvin JE, Koretzky GA, Jordan MS. T cell activation. Annu Rev Immunol. 2009;27:591–619.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996;271:1734–6.PubMedCrossRefGoogle Scholar
  177. 177.
    Maker AV, Yang JC, Sherry RM, et al. Intrapatient dose escalation of anti-CTLA-4 antibody in patients with metastatic melanoma. J Immunother. 2006;29:455–63.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Reuben JM, Lee BN, Li C, et al. Biologic and immunomodulatory events after CTLA-4 blockade with ticilimumab in patients with advanced malignant melanoma. Cancer. 2006;106:2437–44.PubMedCrossRefGoogle Scholar
  179. 179.
    Hodi FS, Mihm MC, Soiffer RJ, et al. Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc Natl Acad Sci U S A. 2003;100:4712–7.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Phan GQ, Yang JC, Sherry RM, et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci U S A. 2003;100:8372–7.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Attia P, Phan GQ, Maker AV, et al. Autoimmunity correlates with tumor regression in patients with metastatic melanoma treated with anti-cytotoxic T-lymphocyte antigen-4. J Clin Oncol Off J Am Soc Clin Oncol. 2005;23:6043–53.CrossRefGoogle Scholar
  182. 182.
    Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med. 2004;10:909–15.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Robert C, Thomas L, Bondarenko I, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364:2517–26.PubMedCrossRefGoogle Scholar
  185. 185.
    Maio M, Grob JJ, Aamdal S, et al. Five-year survival rates for treatment-naive patients with advanced melanoma who received ipilimumab plus dacarbazine in a phase III trial. J Clin Oncol Off J Am Soc Clin Oncol. 2015;33:1191–6.CrossRefGoogle Scholar
  186. 186.
    Schadendorf D, Hodi FS, Robert C, et al. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol Off J Am Soc Clin Oncol. 2015;33(17):1889–94.CrossRefGoogle Scholar
  187. 187.
    Blansfield JA, Beck KE, Tran K, et al. Cytotoxic T-lymphocyte-associated antigen-4 blockage can induce autoimmune hypophysitis in patients with metastatic melanoma and renal cancer. J Immunother. 2005;28:593–8.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Postow MA, Callahan MK, Wolchok JD. The antitumor immunity of ipilimumab: (T-cell) memories to last a lifetime? Clin Cancer Res Off J Am Assoc Cancer Res. 2012;18:1821–3.CrossRefGoogle Scholar
  189. 189.
    Prieto PA, Yang JC, Sherry RM, et al. CTLA-4 blockade with ipilimumab: long-term follow-up of 177 patients with metastatic melanoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2012;18:2039–47.CrossRefGoogle Scholar
  190. 190.
    Eggermont AM, Chiarion-Sileni V, Grob JJ, et al. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. Lancet Oncol. 2015;16(5):522–30.PubMedCrossRefGoogle Scholar
  191. 191.
    Kirkwood JM, Lorigan P, Hersey P, et al. Phase II trial of tremelimumab (CP-675,206) in patients with advanced refractory or relapsed melanoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2010;16:1042–8.CrossRefGoogle Scholar
  192. 192.
    Ribas A, Kefford R, Marshall MA, et al. Phase III randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31:616–22.CrossRefGoogle Scholar
  193. 193.
    Okazaki T, Honjo T. PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol. 2007;19:813–24.PubMedCrossRefGoogle Scholar
  194. 194.
    Peggs KS, Quezada SA. PD-1 blockade: promoting endogenous anti-tumor immunity. Expert Rev Anticancer Ther. 2012;12:1279–82.PubMedCrossRefGoogle Scholar
  195. 195.
    Barber DL, Wherry EJ, Masopust D, et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 2006;439:682–7.PubMedCrossRefGoogle Scholar
  196. 196.
    Topalian SL, Drake CG, Pardoll DM. Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol. 2012;24:207–12.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Blank C, Brown I, Peterson AC, et al. PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res. 2004;64:1140–5.PubMedCrossRefGoogle Scholar
  198. 198.
    Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Weber JS, Kudchadkar RR, Yu B, et al. Safety, efficacy, and biomarkers of nivolumab with vaccine in ipilimumab-refractory or -naive melanoma. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31:4311–8.CrossRefGoogle Scholar
  200. 200.
    Topalian SL, Sznol M, McDermott DF, et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol Off J Am Soc Clin Oncol. 2014;32:1020–30.CrossRefGoogle Scholar
  201. 201.
    Mahoney KM, Freeman GJ, McDermott DF. The next immune-checkpoint inhibitors: PD-1/PD-L1 blockade in melanoma. Clin Ther. 2015;37(4):764–82.PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Robert C, Long GV, Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372:320–30.PubMedCrossRefGoogle Scholar
  203. 203.
    Zavala VA, Kalergis AM. New clinical advances in immunotherapy for the treatment of solid tumours. Immunology. 2015;145(2):182–201.PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    FDA approves Opdivo for advanced melanoma. 2015. Accessed 5 April 2015, at http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm427716.htm.
  205. 205.
    Hamid O, Robert C, Daud A, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013;369:134–44.PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Weber JS, D’Angelo SP, Minor D, et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2015;16(4):375–84.PubMedCrossRefGoogle Scholar
  207. 207.
    Dummer R, Daud A, Puzanov I, et al. A randomized controlled comparison of pembrolizumab and chemotherapy in patients with ipilimumab-refractory melanoma. J Transl Med. 2015;13:2062.Google Scholar
  208. 208.
    FDA approves Keytruda for advanced melanoma. 2015. Accessed 5 April 2015, at http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm412802.htm.
  209. 209.
    Brahmer JR, Tykodi SS, Chow LQ, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366:2455–65.PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Boni A, Cogdill AP, Dang P, et al. Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Res. 2010;70:5213–9.PubMedCrossRefGoogle Scholar
  211. 211.
    Comin-Anduix B, Chodon T, Sazegar H, et al. The oncogenic BRAF kinase inhibitor PLX4032/RG7204 does not affect the viability or function of human lymphocytes across a wide range of concentrations. Clin Cancer Res Off J Am Assoc Cancer Res. 2010;16:6040–8.CrossRefGoogle Scholar
  212. 212.
    Ribas A, Hodi FS, Callahan M, Konto C, Wolchok J. Hepatotoxicity with combination of vemurafenib and ipilimumab. N Engl J Med. 2013;368:1365–6.PubMedCrossRefGoogle Scholar
  213. 213.
    Ascierto PA, Simeone E, Sileni VC, et al. Sequential treatment with ipilimumab and BRAF inhibitors in patients with metastatic melanoma: data from the Italian cohort of the ipilimumab expanded access program. Cancer Invest. 2014;32:144–9.PubMedCrossRefGoogle Scholar
  214. 214.
    Hodi FS, Lee SJ, McDermott DF, et al. Multicenter, randomized phase II trial of GM-CSF (GM) plus ipilimumab (Ipi) versus Ipi alone in metastatic melanoma: E1608. J Clin Oncol: Off J Am Soc Clin Oncol. 2013;13(suppl):abstr CRA9007.Google Scholar
  215. 215.
    Wolchok JD, Kluger H, Callahan MK, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369:122–33.PubMedCrossRefGoogle Scholar
  216. 216.
    Postow MA, Chesney J, Pavlick AC, et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med. 2015;372:2006–17.PubMedCrossRefGoogle Scholar
  217. 217.
    Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34.PubMedCrossRefGoogle Scholar
  218. 218.
    Yee C, Thompson JA, Byrd D, et al. Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc Natl Acad Sci U S A. 2002;99:16168–73.PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Meidenbauer N, Marienhagen J, Laumer M, et al. Survival and tumor localization of adoptively transferred Melan-A-specific T cells in melanoma patients. J Immunol. 2003;170:2161–9.PubMedCrossRefGoogle Scholar
  220. 220.
    Dudley ME, Wunderlich JR, Robbins PF, et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science. 2002;298:850–4.PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Ridolfi L, Ridolfi R, Riccobon A, et al. Adjuvant immunotherapy with tumor infiltrating lymphocytes and interleukin-2 in patients with resected stage III and IV melanoma. J Immunother. 2003;26:156–62.PubMedCrossRefGoogle Scholar
  222. 222.
    Darrow TL, Slingluff CL, Seigler HF. Autologous lymph node cell-derived tumor-specific cytotoxic T-cells for use in adoptive immunotherapy of human melanoma. Cancer. 1988;62:84–91.PubMedCrossRefGoogle Scholar
  223. 223.
    Rosenberg SA, Yannelli JR, Yang JC, et al. Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. J Natl Cancer Inst. 1994;86:1159–66.PubMedCrossRefGoogle Scholar
  224. 224.
    Arienti F, Belli F, Rivoltini L, et al. Adoptive immunotherapy of advanced melanoma patients with interleukin-2 (IL-2) and tumor-infiltrating lymphocytes selected in vitro with low doses of IL-2. Cancer Immunol Immunother. 1993;36:315–22.PubMedCrossRefGoogle Scholar
  225. 225.
    Adler A, Stein JA, Kedar E, Naor D, Weiss DW. Intralesional injection of interleukin-2-expanded autologous lymphocytes in melanoma and breast cancer patients: a pilot study. J Biol Response Mod. 1984;3:491–500.PubMedGoogle Scholar
  226. 226.
    Ellebaek E, Iversen TZ, Junker N, et al. Adoptive cell therapy with autologous tumor infiltrating lymphocytes and low-dose Interleukin-2 in metastatic melanoma patients. J Transl Med. 2012;10:169.PubMedPubMedCentralCrossRefGoogle Scholar
  227. 227.
    Verdegaal EM, Visser M, Ramwadhdoebe TH, et al. Successful treatment of metastatic melanoma by adoptive transfer of blood-derived polyclonal tumor-specific CD4+ and CD8+ T cells in combination with low-dose interferon-alpha. Cancer Immunol Immunother. 2011;60:953–63.PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    Hinrichs CS, Rosenberg SA. Exploiting the curative potential of adoptive T-cell therapy for cancer. Immunol Rev. 2014;257:56–71.PubMedPubMedCentralCrossRefGoogle Scholar
  229. 229.
    Rosenberg SA, Yang JC, Sherry RM, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res Off J Am Assoc Cancer Res. 2011;17:4550–7.CrossRefGoogle Scholar
  230. 230.
    Robbins PF, Dudley ME, Wunderlich J, et al. Cutting edge: persistence of transferred lymphocyte clonotypes correlates with cancer regression in patients receiving cell transfer therapy. J Immunol. 2004;173:7125–30.PubMedPubMedCentralCrossRefGoogle Scholar
  231. 231.
    Gros A, Turcotte S, Wunderlich JR, Ahmadzadeh M, Dudley ME, Rosenberg SA. Myeloid cells obtained from the blood but not from the tumor can suppress T-cell proliferation in patients with melanoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2012;18:5212–23.CrossRefGoogle Scholar
  232. 232.
    Yao X, Ahmadzadeh M, Lu YC, et al. Levels of peripheral CD4(+)FoxP3(+) regulatory T cells are negatively associated with clinical response to adoptive immunotherapy of human cancer. Blood. 2012;119:5688–96.PubMedPubMedCentralCrossRefGoogle Scholar
  233. 233.
    Muranski P, Boni A, Wrzesinski C, et al. Increased intensity lymphodepletion and adoptive immunotherapy--how far can we go? Nat Clin Pract Oncol. 2006;3:668–81.PubMedPubMedCentralCrossRefGoogle Scholar
  234. 234.
    Dudley ME, Yang JC, Sherry R, et al. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26:5233–9.CrossRefGoogle Scholar
  235. 235.
    Barrett DM, Singh N, Porter DL, Grupp SA, June CH. Chimeric antigen receptor therapy for cancer. Annu Rev Med. 2014;65:333–47.PubMedCrossRefGoogle Scholar
  236. 236.
    Tasian SK, Pollard JA, Aplenc R. Molecular therapeutic approaches for pediatric acute myeloid leukemia. Front Oncol. 2014;4:55.PubMedPubMedCentralGoogle Scholar
  237. 237.
    McIllmurray MB, Embleton MJ, Reeves WG, Langman MJ, Deane M. Controlled trial of active immunotherapy in management of stage IIB malignant melanoma. Br Med J. 1977;1:540–2.PubMedPubMedCentralCrossRefGoogle Scholar
  238. 238.
    McIllmurray MB, Reeves WG, Langman MJ, Deane M, Embleton MJ. Active immunotherapy in malignant melanoma. Br Med J. 1978;1:579.PubMedPubMedCentralCrossRefGoogle Scholar
  239. 239.
    Aranha GV, McKhann CF, Grage TB, Gunnarsson A, Simmons RL. Adjuvant immunotherapy of malignant melanoma. Cancer. 1979;43:1297–303.PubMedCrossRefGoogle Scholar
  240. 240.
    Berd D, Sato T, Cohn H, Maguire Jr HC, Mastrangelo MJ. Treatment of metastatic melanoma with autologous, hapten-modified melanoma vaccine: regression of pulmonary metastases. Int J Cancer. 2001;94:531–9.PubMedCrossRefGoogle Scholar
  241. 241.
    Berd D, Sato T, Maguire Jr HC, Kairys J, Mastrangelo MJ. Immunopharmacologic analysis of an autologous, hapten-modified human melanoma vaccine. J Clin Oncol Off J Am Soc Clin Oncol. 2004;22:403–15.CrossRefGoogle Scholar
  242. 242.
    Belli F, Testori A, Rivoltini L, et al. Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein gp96-peptide complexes: clinical and immunologic findings. J Clin Oncol Off J Am Soc Clin Oncol. 2002;20:4169–80.CrossRefGoogle Scholar
  243. 243.
    Lee KP, Raez LE, Podack ER. Heat shock protein-based cancer vaccines. Hematol Oncol Clin North Am. 2006;20:637–59.PubMedCrossRefGoogle Scholar
  244. 244.
    Eton O, Ross MI, East MJ, et al. Autologous tumor-derived heat-shock protein peptide complex-96 (HSPPC-96) in patients with metastatic melanoma. J Transl Med. 2010;8:9.PubMedPubMedCentralCrossRefGoogle Scholar
  245. 245.
    Soiffer R, Hodi FS, Haluska F, et al. Vaccination with irradiated, autologous melanoma cells engineered to secrete granulocyte-macrophage colony-stimulating factor by adenoviral-mediated gene transfer augments antitumor immunity in patients with metastatic melanoma. J Clin Oncol Off J Am Soc Clin Oncol. 2003;21:3343–50.CrossRefGoogle Scholar
  246. 246.
    Soiffer R, Lynch T, Mihm M, et al. Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte-macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma. Proc Natl Acad Sci U S A. 1998;95:13141–6.PubMedPubMedCentralCrossRefGoogle Scholar
  247. 247.
    Bystryn JC, Zeleniuch-Jacquotte A, Oratz R, Shapiro RL, Harris MN, Roses DF. Double-blind trial of a polyvalent, shed-antigen, melanoma vaccine. Clin Cancer Res Off J Am Assoc Cancer Res. 2001;7:1882–7.Google Scholar
  248. 248.
    Mitchell MS. Perspective on allogeneic melanoma lysates in active specific immunotherapy. Semin Oncol. 1998;25:623–35.PubMedGoogle Scholar
  249. 249.
    Sondak VK, Liu PY, Tuthill RJ, et al. Adjuvant immunotherapy of resected, intermediate-thickness, node-negative melanoma with an allogeneic tumor vaccine: overall results of a randomized trial of the Southwest Oncology Group. J Clin Oncol Off J Am Soc Clin Oncol. 2002;20:2058–66.CrossRefGoogle Scholar
  250. 250.
    Sosman JA, Unger JM, Liu PY, et al. Adjuvant immunotherapy of resected, intermediate-thickness, node-negative melanoma with an allogeneic tumor vaccine: impact of HLA class I antigen expression on outcome. J Clin Oncol Off J Am Soc Clin Oncol. 2002;20:2067–75.CrossRefGoogle Scholar
  251. 251.
    Faries MB, Morton DL. Therapeutic vaccines for melanoma: current status. BioDrugs. 2005;19:247–60.PubMedCrossRefGoogle Scholar
  252. 252.
    Sinkovics J, Horvath J. New developments in the virus therapy of cancer: a historical review. Intervirology. 1993;36:193–214.PubMedCrossRefGoogle Scholar
  253. 253.
    Wallack MK, Sivanandham M, Balch CM, et al. A phase III randomized, double-blind multiinstitutional trial of vaccinia melanoma oncolysate-active specific immunotherapy for patients with stage II melanoma. Cancer. 1995;75:34–42.PubMedCrossRefGoogle Scholar
  254. 254.
    Cassel WA, Murray DR, Phillips HS. A phase II study on the postsurgical management of stage II malignant melanoma with a Newcastle disease virus oncolysate. Cancer. 1983;52:856–60.PubMedCrossRefGoogle Scholar
  255. 255.
    Cassel WA, Murray DR. A ten-year follow-up on stage II malignant melanoma patients treated postsurgically with Newcastle disease virus oncolysate. Med Oncol Tumor Pharmacother. 1992;9:169–71.PubMedGoogle Scholar
  256. 256.
    Batliwalla FM, Bateman BA, Serrano D, et al. A 15-year follow-up of AJCC stage III malignant melanoma patients treated postsurgically with Newcastle disease virus (NDV) oncolysate and determination of alterations in the CD8 T cell repertoire. Mol Med. 1998;4:783–94.PubMedPubMedCentralGoogle Scholar
  257. 257.
    von Hoegen P, Zawatzky R, Schirrmacher V. Modification of tumor cells by a low dose of Newcastle disease virus. III. Potentiation of tumor-specific cytolytic T cell activity via induction of interferon-alpha/beta. Cell Immunol. 1990;126:80–90.CrossRefGoogle Scholar
  258. 258.
    Toda M, Martuza RL, Rabkin SD. Tumor growth inhibition by intratumoral inoculation of defective herpes simplex virus vectors expressing granulocyte-macrophage colony-stimulating factor. Mol Ther J Am Soc Gene Ther. 2000;2:324–9.CrossRefGoogle Scholar
  259. 259.
    Kaufman HL, Kim DW, DeRaffele G, Mitcham J, Coffin RS, Kim-Schulze S. Local and distant immunity induced by intralesional vaccination with an oncolytic herpes virus encoding GM-CSF in patients with stage IIIc and IV melanoma. Ann Surg Oncol. 2010;17:718–30.PubMedCrossRefGoogle Scholar
  260. 260.
    Liu BL, Robinson M, Han ZQ, et al. ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther. 2003;10:292–303.PubMedCrossRefGoogle Scholar
  261. 261.
    Senzer NN, Kaufman HL, Amatruda T, et al. Phase II clinical trial of a granulocyte-macrophage colony-stimulating factor-encoding, second-generation oncolytic herpesvirus in patients with unresectable metastatic melanoma. J Clin Oncol Off J Am Soc Clin Oncol. 2009;27:5763–71.CrossRefGoogle Scholar
  262. 262.
    Andtbacka RHI, Collichio FA, Armatruda T, et al. OPTiM: a randomized phase III trial of talimogene laherparepvec (T-VEC) versus subcutaneous (SC) granulocyte-macrophage colony-stimulating factor (GM-CSF) for the treatment (tx) of unresected stage IIIB/C and IV melanoma. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31 (suppl; abstr LBA9008).Google Scholar
  263. 263.
    Rosenberg SA, Yang JC, Schwartzentruber DJ, et al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med. 1998;4:321–7.PubMedPubMedCentralCrossRefGoogle Scholar
  264. 264.
    Marchand M, van Baren N, Weynants P, et al. Tumor regressions observed in patients with metastatic melanoma treated with an antigenic peptide encoded by gene MAGE-3 and presented by HLA-A1. Int J Cancer. 1999;80:219–30.PubMedCrossRefGoogle Scholar
  265. 265.
    Cormier JN, Salgaller ML, Prevette T, et al. Enhancement of cellular immunity in melanoma patients immunized with a peptide from MART-1/Melan A. Cancer J Sci Am. 1997;3:37–44.PubMedPubMedCentralGoogle Scholar
  266. 266.
    Scheibenbogen C, Schmittel A, Keilholz U, et al. Phase 2 trial of vaccination with tyrosinase peptides and granulocyte-macrophage colony-stimulating factor in patients with metastatic melanoma. J Immunother. 2000;23:275–81.PubMedCrossRefGoogle Scholar
  267. 267.
    Schwartzentruber DJ, Lawson DH, Richards JM, et al. gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N Engl J Med. 2011;364:2119–27.PubMedPubMedCentralCrossRefGoogle Scholar
  268. 268.
    Livingston PO, Wong GY, Adluri S, et al. Improved survival in stage III melanoma patients with GM2 antibodies: a randomized trial of adjuvant vaccination with GM2 ganglioside. J Clin Oncol Off J Am Soc Clin Oncol. 1994;12:1036–44.CrossRefGoogle Scholar
  269. 269.
    Chapman PB, Morrissey DM, Panageas KS, et al. Induction of antibodies against GM2 ganglioside by immunizing melanoma patients using GM2-keyhole limpet hemocyanin + QS21 vaccine: a dose-response study. Clin Cancer Res Off J Am Assoc Cancer Res. 2000;6:874–9.Google Scholar
  270. 270.
    Kirkwood JM, Ibrahim JG, Sosman JA, et al. High-dose interferon alfa-2b significantly prolongs relapse-free and overall survival compared with the GM2-KLH/QS-21 vaccine in patients with resected stage IIB-III melanoma: results of intergroup trial E1694/S9512/C509801. J Clin Oncol Off J Am Soc Clin Oncol. 2001;19:2370–80.CrossRefGoogle Scholar
  271. 271.
    Ragupathi G, Meyers M, Adluri S, Howard L, Musselli C, Livingston PO. Induction of antibodies against GD3 ganglioside in melanoma patients by vaccination with GD3-lactone-KLH conjugate plus immunological adjuvant QS-21. Int J Cancer. 2000;85:659–66.PubMedCrossRefGoogle Scholar
  272. 272.
    Chapman PB. Vaccinating against GD3 ganglioside using BEC2 anti-idiotypic monoclonal antibody. Curr Opin Investig Drugs. 2003;4:710–5.PubMedGoogle Scholar
  273. 273.
    Foon KA, Lutzky J, Baral RN, et al. Clinical and immune responses in advanced melanoma patients immunized with an anti-idiotype antibody mimicking disialoganglioside GD2. J Clin Oncol Off J Am Soc Clin Oncol. 2000;18:376–84.CrossRefGoogle Scholar
  274. 274.
    Alfonso M, Diaz A, Hernandez AM, et al. An anti-idiotype vaccine elicits a specific response to N-glycolyl sialic acid residues of glycoconjugates in melanoma patients. J Immunol. 2002;168:2523–9.PubMedCrossRefGoogle Scholar
  275. 275.
    Saito H, Frleta D, Dubsky P, Palucka AK. Dendritic cell-based vaccination against cancer. Hematol Oncol Clin North Am. 2006;20:689–710.PubMedCrossRefGoogle Scholar
  276. 276.
    Campton K, Ding W, Yan Z, et al. Tumor antigen presentation by dermal antigen-presenting cells. J Invest Dermatol. 2000;115:57–61.PubMedCrossRefGoogle Scholar
  277. 277.
    Klein C, Bueler H, Mulligan RC. Comparative analysis of genetically modified dendritic cells and tumor cells as therapeutic cancer vaccines. J Exp Med. 2000;191:1699–708.PubMedPubMedCentralCrossRefGoogle Scholar
  278. 278.
    Nestle FO, Alijagic S, Gilliet M, et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med. 1998;4:328–32.PubMedCrossRefGoogle Scholar
  279. 279.
    Schuler-Thurner B, Schultz ES, Berger TG, et al. Rapid induction of tumor-specific type 1 T helper cells in metastatic melanoma patients by vaccination with mature, cryopreserved, peptide-loaded monocyte-derived dendritic cells. J Exp Med. 2002;195:1279–88.PubMedPubMedCentralCrossRefGoogle Scholar
  280. 280.
    Banchereau J, Palucka AK, Dhodapkar M, et al. Immune and clinical responses in patients with metastatic melanoma to CD34(+) progenitor-derived dendritic cell vaccine. Cancer Res. 2001;61:6451–8.PubMedGoogle Scholar
  281. 281.
    O’Rourke MG, Johnson M, Lanagan C, et al. Durable complete clinical responses in a phase I/II trial using an autologous melanoma cell/dendritic cell vaccine. Cancer Immunol Immunother. 2003;52:387–95.PubMedGoogle Scholar
  282. 282.
    Chang AE, Redman BG, Whitfield JR, et al. A phase I trial of tumor lysate-pulsed dendritic cells in the treatment of advanced cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2002;8:1021–32.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • David L. Chen
    • 1
  • Cheryl Armstrong
    • 2
    Email author
  • Mariah R. Brown
    • 2
  1. 1.Department of DermatologyUniversity of Colorado Denver, Anschutz Medical CampusAuroraUSA
  2. 2.Department of DermatologyUniversity of Colorado School of MedicineAuroraUSA

Personalised recommendations