Advertisement

Contact Dermatitis

  • Stefan F. MartinEmail author
  • Thilo Jakob
Chapter

Abstract

Our skin is exposed daily to a large number of chemicals in household products, cosmetics, in the environment and in the workplace. Many of these chemicals can cause irritant or allergic contact dermatitis. Allergic contact dermatitis is an inflammatory skin disease that is mediated by our immune system. In this chapter we summarize current methods for the diagnosis of contact dermatitis and treatment strategies. In addition we review our current understanding of the cellular and molecular pathomechanisms and its implications for the development of novel diagnostic and treatment strategies and of animal-free testing strategies for contact allergen identification.

Keywords

Allergic contact dermatitis ACD Antigen presenting cell APC Hypersensitivity Damage-associated molecular pattern T cell Mononuclear cell Local Lymph Node Assay LLNA Contact dermatitis Heterologous innate immunity 

Abbreviations

ACD

Allergic contact dermatitis

APC

Antigen presenting cell

CHS

Contact hypersensitivity

DAMP

Damage-associated molecular pattern

DNBS

2,4-dinitrobenzene sulfonic acid

DNCB

2,4-dinitrochlorobenzene

DNFB

2,4-dinitrofluorobenzene

DNTB

2,4-dinitrothiocyanobenzene

FLG

Filaggrin

HA

Hyaluronic acid

hTCPA

Human T cell priming assay

ICD

Irritant contact dermatitis

LLNA

Local Lymph Node Assay

LZT

Low zone tolerance

MAMP

Microbe-associated molecular pattern

MHC

Major histocompatibility complex

PAMP

Pathogen-associated molecular pattern

PBMC

Peripheral blood mononuclear cell

PRR

Pattern recognition receptor

TCR

T cell receptor

TNBS

2,4,6-trinitrobenzene sulfonic acid

TNCB

2,4,6-trinitrochlorobenzene

TLR

Toll-like receptor

Treg

Regulatory T cell

References

  1. 1.
    Peiser M, Tralau T, Heidler J, Api AM, Arts JH, Basketter DA, English J, Diepgen TL, Fuhlbrigge RC, Gaspari AA, Johansen JD, Karlberg AT, Kimber I, Lepoittevin JP, Liebsch M, Maibach HI, Martin SF, Merk HF, Platzek T, Rustemeyer T, Schnuch A, Vandebriel RJ, White IR, Luch A. Allergic contact dermatitis: epidemiology, molecular mechanisms, in vitro methods and regulatory aspects. Current knowledge assembled at an international workshop at BfR, Germany. Cell Mol Life Sci. 2012;69(5):763–81. doi: 10.1007/s00018-011-0846-8.PubMedCrossRefGoogle Scholar
  2. 2.
    Thyssen JP, Linneberg A, Menne T, Johansen JD. The epidemiology of contact allergy in the general population–prevalence and main findings. Contact Dermatitis. 2007;57(5):287–99. COD1220 [pii]. doi: 10.1111/j.1600-0536.2007.01220.x.PubMedCrossRefGoogle Scholar
  3. 3.
    Diepgen TL. Occupational skin diseases. J Dtsch Dermatol Ges (Journal of the German Society of Dermatology). 2012;10(5):297–313. doi: 10.1111/j.1610-0387.2012.07890.x. quiz 314–295.Google Scholar
  4. 4.
    Sartorelli P, Kezic S, Larese Filon F, John SM. Prevention of occupational dermatitis. Int J Immunopathol Pharmacol. 2011;24(1 Suppl):89S–93.PubMedGoogle Scholar
  5. 5.
    Holness DL. Recent advances in occupational dermatitis. Curr Opin Allergy Clin Immunol. 2013;13(2):145–50. doi: 10.1097/ACI.0b013e32835e12cf.PubMedCrossRefGoogle Scholar
  6. 6.
    Mahler V, Geier J, Schnuch A. Current trends in patch testing – new data from the German Contact Dermatitis Research Group (DKG) and the Information Network of Departments of Dermatology (IVDK). J Dtsch Dermatol Ges (Journal of the German Society of Dermatology). 2014;12(7):583–92. doi: 10.1111/ddg.12371.Google Scholar
  7. 7.
    McFadden JP, Mann J, White JM, Banerjee P, White IR. Outbreak of methylisothiazolinone allergy targeting those aged >/=40 years. Contact Dermatitis. 2013;69(1):53–5. doi: 10.1111/cod.12093.PubMedCrossRefGoogle Scholar
  8. 8.
    Lundov MD, Opstrup MS, Johansen JD. Methylisothiazolinone contact allergy–growing epidemic. Contact Dermatitis. 2013;69(5):271–5. doi: 10.1111/cod.12149.PubMedCrossRefGoogle Scholar
  9. 9.
    Lundov MD, Zachariae C, Menne T, Johansen JD. Airborne exposure to preservative methylisothiazolinone causes severe allergic reactions. BMJ. 2012;345:e8221. doi: 10.1136/bmj.e8221.PubMedCrossRefGoogle Scholar
  10. 10.
    Santos R, Goossens A. An update on airborne contact dermatitis: 2001–2006. Contact Dermatitis. 2007;57(6):353–60. doi: 10.1111/j.1600-0536.2007.01233.x.PubMedCrossRefGoogle Scholar
  11. 11.
    Swinnen I, Goossens A. An update on airborne contact dermatitis: 2007–2011. Contact Dermatitis. 2013;68(4):232–8. doi: 10.1111/cod.12022.PubMedCrossRefGoogle Scholar
  12. 12.
    Lundov MD, Friis UF, Menne T, Johansen JD. Methylisothiazolinone in paint forces a patient out of her apartment. Contact Dermatitis. 2013;69(4):252–3. doi: 10.1111/cod.12136.PubMedCrossRefGoogle Scholar
  13. 13.
    Hausermann P, Harr T, Bircher AJ. Baboon syndrome resulting from systemic drugs: is there strife between SDRIFE and allergic contact dermatitis syndrome? Contact Dermatitis. 2004;51(5-6):297–310. doi: 10.1111/j.0105-1873.2004.00445.x.PubMedCrossRefGoogle Scholar
  14. 14.
    Veien NK. Systemic contact dermatitis. Int J Dermatol. 2011;50(12):1445–56. doi: 10.1111/j.1365-4632.2011.05104.x.PubMedCrossRefGoogle Scholar
  15. 15.
    Kerr A, Ferguson J. Photoallergic contact dermatitis. Photodermatol Photoimmunol Photomed. 2010;26(2):56–65. doi: 10.1111/j.1600-0781.2010.00494.x.PubMedCrossRefGoogle Scholar
  16. 16.
    Novak N, Baurecht H, Schafer T, Rodriguez E, Wagenpfeil S, Klopp N, Heinrich J, Behrendt H, Ring J, Wichmann E, Illig T, Weidinger S. Loss-of-function mutations in the filaggrin gene and allergic contact sensitization to nickel. J Invest Dermatol. 2008;128(6):1430–5. 5701190[pii]. doi: 10.1038/sj.jid.5701190.
  17. 17.
    Spiewak R. Contact dermatitis in atopic individuals. Curr Opin Allergy Clin Immunol. 2012;12(5):491–7. doi: 10.1097/ACI.0b013e328357b05a.PubMedCrossRefGoogle Scholar
  18. 18.
    Gittler JK, Krueger JG, Guttman-Yassky E. Atopic dermatitis results in intrinsic barrier and immune abnormalities: implications for contact dermatitis. J Allergy Clin Immunol. 2013;131(2):300–13. doi: 10.1016/j.jaci.2012.06.048.PubMedCrossRefGoogle Scholar
  19. 19.
    Thyssen JP, McFadden JP, Kimber I. The multiple factors affecting the association between atopic dermatitis and contact sensitization. Allergy. 2014;69(1):28–36. doi: 10.1111/all.12358.PubMedCrossRefGoogle Scholar
  20. 20.
    De Benedetto A, Kubo A, Beck LA. Skin barrier disruption: a requirement for allergen sensitization? J Invest Dermatol. 2012;132(3 Pt 2):949–63. doi: 10.1038/jid.2011.435.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Matzinger P. The danger model: a renewed sense of self. Science. 2002;296(5566):301–5. doi: 10.1126/science.1071059296/5566/301[pii].PubMedCrossRefGoogle Scholar
  22. 22.
    Martin SF. Allergic contact dermatitis: xenoinflammation of the skin. Curr Opin Immunol. 2012;24(6):720–9. doi: 10.1016/j.coi.2012.08.003.PubMedCrossRefGoogle Scholar
  23. 23.
    Martin SF. Adaptation in the innate immune system and heterologous innate immunity. Cell Mol Life Sci. 2014;71(21):4115–30. doi: 10.1007/s00018-014-1676-2.PubMedCrossRefGoogle Scholar
  24. 24.
    Brasch J, Henseler T. The reaction index: a parameter to assess the quality of patch test preparations. Contact Dermatitis. 1992;27(3):203–4.PubMedCrossRefGoogle Scholar
  25. 25.
    Brasch J, Geier J, Henseler T. Evaluation of patch test results by use of the reaction index. An analysis of data recorded by the Information Network of Departments of Dermatology (IVDK). Contact Dermatitis. 1995;33(6):375–80.PubMedCrossRefGoogle Scholar
  26. 26.
    Geier J, Uter W, Lessmann H, Schnuch A. The positivity ratio–another parameter to assess the diagnostic quality of a patch test preparation. Contact Dermatitis. 2003;48(5):280–2.PubMedCrossRefGoogle Scholar
  27. 27.
    Andersen KE, Andersen F. The reaction index and positivity ratio revisited. Contact Dermatitis. 2008;58(1):28–31. doi: 10.1111/j.1600-0536.2007.01252.x.PubMedCrossRefGoogle Scholar
  28. 28.
    Dickel H, Kreft B, Kuss O, Worm M, Soost S, Brasch J, Pfutzner W, Grabbe J, Angelova-Fischer I, Elsner P, Fluhr J, Altmeyer P, Geier J. Increased sensitivity of patch testing by standardized tape stripping beforehand: a multicentre diagnostic accuracy study. Contact Dermatitis. 2010;62(5):294–302. doi: 10.1111/j.1600-0536.2010.01710.x.PubMedCrossRefGoogle Scholar
  29. 29.
    Dickel H, Gambichler T, Kamphowe J, Altmeyer P, Skrygan M. Standardized tape stripping prior to patch testing induces upregulation of Hsp90, Hsp70, IL-33, TNF-alpha and IL-8/CXCL8 mRNA: new insights into the involvement of ‘alarmins’. Contact Dermatitis. 2010;63(4):215–22. doi: 10.1111/j.1600-0536.2010.01769.x.PubMedCrossRefGoogle Scholar
  30. 30.
    Johansen JD, Bruze M, Andersen KE, Frosch PJ, Dreier B, White IR, Rastogi S, Lepoittevin JP, Menne T. The repeated open application test: suggestions for a scale of evaluation. Contact Dermatitis. 1998;39(2):95–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Nakada T, Hostynek JJ, Maibach HI. Use tests: ROAT (repeated open application test)/PUT (provocative use test): an overview. Contact Dermatitis. 2000;43(1):1–3.PubMedCrossRefGoogle Scholar
  32. 32.
    Goncalo M, Ferguson J, Bonevalle A, Bruynzeel DP, Gimenez-Arnau A, Goossens A, Kerr A, Lecha M, Neumann N, Niklasson B, Pigatto P, Rhodes LE, Rustemeyer T, Sarkany R, Thomas P, Wilkinson M. Photopatch testing: recommendations for a European photopatch test baseline series. Contact Dermatitis. 2013;68(4):239–43. doi: 10.1111/cod.12037.PubMedCrossRefGoogle Scholar
  33. 33.
    Watson ES. Toxicodendron hyposensitization programs. Clin Dermatol. 1986;4(2):160–70.PubMedCrossRefGoogle Scholar
  34. 34.
    Bonamonte D, Cristaudo A, Nasorri F, Carbone T, De Pita O, Angelini G, Cavani A. Efficacy of oral hyposensitization in allergic contact dermatitis caused by nickel. Contact Dermatitis. 2011;65(5):293–301. doi: 10.1111/j.1600-0536.2011.01940.x.PubMedCrossRefGoogle Scholar
  35. 35.
    Schnuch A, Westphal G, Mossner R, Uter W, Reich K. Genetic factors in contact allergy–review and future goals. Contact Dermatitis. 2011;64(1):2–23. doi: 10.1111/j.1600-0536.2010.01800.x.PubMedCrossRefGoogle Scholar
  36. 36.
    Irvine AD, McLean WH, Leung DY. Filaggrin mutations associated with skin and allergic diseases. N Engl J Med. 2011;365(14):1315–27. doi: 10.1056/NEJMra1011040.PubMedCrossRefGoogle Scholar
  37. 37.
    Palmer CN, Irvine AD, Terron-Kwiatkowski A, Zhao Y, Liao H, Lee SP, Goudie DR, Sandilands A, Campbell LE, Smith FJ, O'Regan GM, Watson RM, Cecil JE, Bale SJ, Compton JG, DiGiovanna JJ, Fleckman P, Lewis-Jones S, Arseculeratne G, Sergeant A, Munro CS, El Houate B, McElreavey K, Halkjaer LB, Bisgaard H, Mukhopadhyay S, McLean WH. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet. 2006;38(4):441–6. doi: 10.1038/ng1767.PubMedCrossRefGoogle Scholar
  38. 38.
    McLean WH, Irvine AD. Heritable filaggrin disorders: the paradigm of atopic dermatitis. J Invest Dermatol. 2012;132(E1):E20–1. doi: 10.1038/skinbio.2012.6.PubMedCrossRefGoogle Scholar
  39. 39.
    Thyssen JP. The association between filaggrin mutations, hand eczema and contact dermatitis: a clear picture is emerging. Br J Dermatol. 2012;167(6):1197–8. doi: 10.1111/bjd.12075.PubMedCrossRefGoogle Scholar
  40. 40.
    Visser MJ, Landeck L, Campbell LE, McLean WH, Weidinger S, Calkoen F, John SM, Kezic S. Impact of atopic dermatitis and loss-of-function mutations in the filaggrin gene on the development of occupational irritant contact dermatitis. Br J Dermatol. 2013;168(2):326–32. doi: 10.1111/bjd.12083.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Kawasaki H, Nagao K, Kubo A, Hata T, Shimizu A, Mizuno H, Yamada T, Amagai M. Altered stratum corneum barrier and enhanced percutaneous immune responses in filaggrin-null mice. J Allergy Clin Immunol. 2012;129(6):1538–46.e1536. doi: 10.1016/j.jaci.2012.01.068.PubMedCrossRefGoogle Scholar
  42. 42.
    Karlberg AT, Borje A, Duus Johansen J, Liden C, Rastogi S, Roberts D, Uter W, White IR. Activation of non-sensitizing or low-sensitizing fragrance substances into potent sensitizers – prehaptens and prohaptens. Contact Dermatitis. 2013;69(6):323–34. doi: 10.1111/cod.12127.PubMedCrossRefGoogle Scholar
  43. 43.
    Aptula AO, Patlewicz G, Roberts DW. Skin sensitization: reaction mechanistic applicability domains for structure-activity relationships. Chem Res Toxicol. 2005;18(9):1420–6. doi: 10.1021/tx050075m.PubMedCrossRefGoogle Scholar
  44. 44.
    Roberts DW, Aptula AO, Patlewicz G. Electrophilic chemistry related to skin sensitization. Reaction mechanistic applicability domain classification for a published data set of 106 chemicals tested in the mouse local lymph node assay. Chem Res Toxicol. 2007;20(1):44–60. doi: 10.1021/tx060121y.PubMedCrossRefGoogle Scholar
  45. 45.
    Albrekt AS, Johansson H, Borje A, Borrebaeck C, Lindstedt M. Skin sensitizers differentially regulate signaling pathways in MUTZ-3 cells in relation to their individual potency. BMC Pharmacol Toxicol. 2014;15:5. doi: 10.1186/2050-6511-15-5.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Martin SF. Contact dermatitis: from pathomechanisms to immunotoxicology. Exp Dermatol. 2012;21(5):382–9. doi: 10.1111/j.1600-0625.2012.01471.x.PubMedCrossRefGoogle Scholar
  47. 47.
    Megherbi R, Kiorpelidou E, Foster B, Rowe C, Naisbitt DJ, Goldring CE, Park BK. Role of protein haptenation in triggering maturation events in the dendritic cell surrogate cell line THP-1. Toxicol Appl Pharmacol. 2009;238(2):120–32.PubMedCrossRefGoogle Scholar
  48. 48.
    Elbayed K, Berl V, Debeuckelaere C, Moussallieh FM, Piotto M, Namer IJ, Lepoittevin JP. HR-MAS NMR spectroscopy of reconstructed human epidermis: potential for the in situ investigation of the chemical interactions between skin allergens and nucleophilic amino acids. Chem Res Toxicol. 2013;26(1):136–45. doi: 10.1021/tx300428u.PubMedCrossRefGoogle Scholar
  49. 49.
    Schmidt M, Raghavan B, Muller V, Vogl T, Fejer G, Tchaptchet S, Keck S, Kalis C, Nielsen PJ, Galanos C, Roth J, Skerra A, Martin SF, Freudenberg MA, Goebeler M. Crucial role for human Toll-like receptor 4 in the development of contact allergy to nickel. Nat Immunol. 2010;11(9):814–9. ni.1919 [pii]. doi: 10.1038/ni.1919.PubMedCrossRefGoogle Scholar
  50. 50.
    Raghavan B, Martin SF, Esser PR, Goebeler M, Schmidt M. Metal allergens nickel and cobalt facilitate TLR4 homodimerization independently of MD2. EMBO Rep. 2012;13(12):1109–15. doi: 10.1038/embor.2012.155.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Rachmawati D, Bontkes HJ, Verstege MI, Muris J, von Blomberg BM, Scheper RJ, van Hoogstraten IM. Transition metal sensing by Toll-like receptor-4: next to nickel, cobalt and palladium are potent human dendritic cell stimulators. Contact Dermatitis. 2013;68(6):331–8. doi: 10.1111/cod.12042.PubMedCrossRefGoogle Scholar
  52. 52.
    El Ali Z, Gerbeix C, Hemon P, Esser PR, Martin SF, Pallardy M, Kerdine-Romer S. Allergic skin inflammation induced by chemical sensitizers is controlled by the transcription factor Nrf2. Toxicol Sci. 2013;134(1):39–48. doi: 10.1093/toxsci/kft084.PubMedCrossRefGoogle Scholar
  53. 53.
    van der Veen JW, Gremmer ER, Vermeulen JP, van Loveren H, Ezendam J. Induction of skin sensitization is augmented in Nrf2-deficient mice. Arch Toxicol. 2013;87(4):763–6. doi: 10.1007/s00204-012-0976-2.PubMedCrossRefGoogle Scholar
  54. 54.
    Silva CR, Oliveira SM, Rossato MF, Dalmolin GD, Guerra GP, da Silveira Prudente A, Cabrini DA, Otuki MF, Andre E, Ferreira J. The involvement of TRPA1 channel activation in the inflammatory response evoked by topical application of cinnamaldehyde to mice. Life Sci. 2011;88(25–26):1077–87. doi: 10.1016/j.lfs.2011.03.017.PubMedCrossRefGoogle Scholar
  55. 55.
    Saarnilehto M, Chapman H, Savinko T, Lindstedt K, Lauerma AI, Koivisto A. Contact sensitizer 2,4-dinitrochlorobenzene is a highly potent human TRPA1 agonist. Allergy. 2014;69(10):1424–7. doi: 10.1111/all.12488.PubMedCrossRefGoogle Scholar
  56. 56.
    Bautista DM, Pellegrino M, Tsunozaki M. TRPA1: a gatekeeper for inflammation. Annu Rev Physiol. 2013;75:181–200. doi: 10.1146/annurev-physiol-030212-183811.PubMedCrossRefGoogle Scholar
  57. 57.
    Wilson SR, Gerhold KA, Bifolck-Fisher A, Liu Q, Patel KN, Dong X, Bautista DM. TRPA1 is required for histamine-independent, Mas-related G protein-coupled receptor-mediated itch. Nat Neurosci. 2011;14(5):595–602. doi: 10.1038/nn.2789.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Liu B, Escalera J, Balakrishna S, Fan L, Caceres AI, Robinson E, Sui A, McKay MC, McAlexander MA, Herrick CA, Jordt SE. TRPA1 controls inflammation and pruritogen responses in allergic contact dermatitis. FASEB J (Official Publication of the Federation of American Societies for Experimental Biology). 2013;27(9):3549–63. doi: 10.1096/fj.13-229948.CrossRefGoogle Scholar
  59. 59.
    Trevisani M, Siemens J, Materazzi S, Bautista DM, Nassini R, Campi B, Imamachi N, Andre E, Patacchini R, Cottrell GS, Gatti R, Basbaum AI, Bunnett NW, Julius D, Geppetti P. 4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. Proc Natl Acad Sci U S A. 2007;104(33):13519–24. doi: 10.1073/pnas.0705923104.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Esser PR, Wolfle U, Durr C, von Loewenich FD, Schempp CM, Freudenberg MA, Jakob T, Martin SF. Contact sensitizers induce skin inflammation via ROS production and hyaluronic acid degradation. PLoS One. 2012;7(7):e41340. doi: 10.1371/journal.pone.0041340.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Martin SF, Esser PR, Weber FC, Jakob T, Freudenberg MA, Schmidt M, Goebeler M. Mechanisms of chemical-induced innate immunity in allergic contact dermatitis. Allergy. 2011;66:1152–63. doi: 10.1111/j.1398-9995.2011.02652.x.PubMedCrossRefGoogle Scholar
  62. 62.
    Kaplan DH, Igyarto BZ, Gaspari AA. Early immune events in the induction of allergic contact dermatitis. Nat Rev Immunol. 2012;12(2):114–24. nri3150 [pii]. doi: 10.1038/nri3150.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Gomez de Aguero M, Vocanson M, Hacini-Rachinel F, Taillardet M, Sparwasser T, Kissenpfennig A, Malissen B, Kaiserlian D, Dubois B. Langerhans cells protect from allergic contact dermatitis in mice by tolerizing CD8(+) T cells and activating Foxp3(+) regulatory T cells. J Clin Invest. 2012;122(5):1700–11. 59725 [pii]. doi: 10.1172/JCI59725.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Seneschal J, Clark RA, Gehad A, Baecher-Allan CM, Kupper TS. Human epidermal langerhans cells maintain immune homeostasis in skin by activating skin resident regulatory T cells. Immunity. 2012;36(5):873–84. S1074-7613(12)00176-8 [pii]. doi: 10.1016/j.immuni.2012.03.018.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Kaplan DH, Kissenpfennig A, Clausen BE. Insights into Langerhans cell function from Langerhans cell ablation models. Eur J Immunol. 2008;38(9):2369–76. doi: 10.1002/eji.200838397.PubMedCrossRefGoogle Scholar
  66. 66.
    Clausen BE, Kel JM. Langerhans cells: critical regulators of skin immunity? Immunol Cell Biol. 2010;88(4):351–60. doi: 10.1038/icb.2010.40.PubMedCrossRefGoogle Scholar
  67. 67.
    Noordegraaf M, Flacher V, Stoitzner P, Clausen BE. Functional redundancy of Langerhans cells and Langerin + dermal dendritic cells in contact hypersensitivity. J Invest Dermatol. 2010;130(12):2752–9. doi: 10.1038/jid.2010.223.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Dudeck A, Dudeck J, Scholten J, Petzold A, Surianarayanan S, Kohler A, Peschke K, Vohringer D, Waskow C, Krieg T, Muller W, Waisman A, Hartmann K, Gunzer M, Roers A. Mast cells are key promoters of contact allergy that mediate the adjuvant effects of haptens. Immunity. 2011;34(6):973–84. S1074-7613(11)00229-9 [pii]. doi: 10.1016/j.immuni.2011.03.028.PubMedCrossRefGoogle Scholar
  69. 69.
    Engeman T, Gorbachev AV, Kish DD, Fairchild RL. The intensity of neutrophil infiltration controls the number of antigen-primed CD8 T cells recruited into cutaneous antigen challenge sites. J Leukoc Biol. 2004;76(5):941–9. doi: 10.1189/jlb.0304193jlb.0304193[pii].PubMedCrossRefGoogle Scholar
  70. 70.
    Christensen AD, Skov S, Haase C. The role of neutrophils and G-CSF in DNFB-induced contact hypersensitivity in mice. Immun Inflamm Dis. 2014;2(1):21–34. doi: 10.1002/iid3.16.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Weber FC, Nemeth T, Csepregi JZ, Dudeck A, Roers A, Ozsvari B, Oswald E, Puskas LG, Jakob T, Mocsai A, Martin SF. Neutrophils are required for both the sensitization and elicitation phase of contact hypersensitivity. J Exp Med. 2014;212:15–22. doi: 10.1084/jem.20130062.PubMedCrossRefGoogle Scholar
  72. 72.
    Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11(5):373–84. ni.1863 [pii]. doi: 10.1038/ni.1863.PubMedCrossRefGoogle Scholar
  73. 73.
    Martin SF, Dudda JC, Bachtanian E, Lembo A, Liller S, Durr C, Heimesaat MM, Bereswill S, Fejer G, Vassileva R, Jakob T, Freudenberg N, Termeer CC, Johner C, Galanos C, Freudenberg MA. Toll-like receptor and IL-12 signaling control susceptibility to contact hypersensitivity. J Exp Med. 2008;205(9):2151–62. jem.20070509 [pii]. doi: 10.1084/jem.20070509.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Weber FC, Esser PR, Muller T, Ganesan J, Pellegatti P, Simon MM, Zeiser R, Idzko M, Jakob T, Martin SF. Lack of the purinergic receptor P2X(7) results in resistance to contact hypersensitivity. J Exp Med. 2010;207(12):2609–19. jem.20092489 [pii]. doi: 10.1084/jem.20092489.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Muto J, Morioka Y, Yamasaki K, Kim M, Garcia A, Carlin AF, Varki A, Gallo RL. Hyaluronan digestion controls DC migration from the skin. J Clin Invest. 2014;124(3):1309–19. doi: 10.1172/JCI67947.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Docampo MJ, Zanna G, Fondevila D, Cabrera J, Lopez-Iglesias C, Carvalho A, Cerrato S, Ferrer L, Bassols A. Increased HAS2-driven hyaluronic acid synthesis in shar-pei dogs with hereditary cutaneous hyaluronosis (mucinosis). Vet Dermatol. 2011;22(6):535–45. doi: 10.1111/j.1365-3164.2011.00986.x.PubMedCrossRefGoogle Scholar
  77. 77.
    Sorokin L. The impact of the extracellular matrix on inflammation. Nat Rev Immunol. 2010;10(10):712–23. nri2852 [pii]. doi: 10.1038/nri2852.PubMedCrossRefGoogle Scholar
  78. 78.
    Galbiati V, Papale A, Galli CL, Marinovich M, Corsini E. Role of ROS and HMGB1 in contact allergen-induced IL-18 production in human keratinocytes. J Invest Dermatol. 2014;134:2719–27. doi: 10.1038/jid.2014.203.PubMedCrossRefGoogle Scholar
  79. 79.
    Li X, Zhong F. Nickel induces interleukin-1beta secretion via the NLRP3-ASC-caspase-1 pathway. Inflammation. 2014;37(2):457–66. doi: 10.1007/s10753-013-9759-z.PubMedCrossRefGoogle Scholar
  80. 80.
    Yasukawa S, Miyazaki Y, Yoshii C, Nakaya M, Ozaki N, Toda S, Kuroda E, Ishibashi K, Yasuda T, Natsuaki Y, Mi-ichi F, Iizasa E, Nakahara T, Yamazaki M, Kabashima K, Iwakura Y, Takai T, Saito T, Kurosaki T, Malissen B, Ohno N, Furue M, Yoshida H, Hara H. An ITAM-Syk-CARD9 signalling axis triggers contact hypersensitivity by stimulating IL-1 production in dendritic cells. Nat Commun. 2014;5:3755. doi: 10.1038/ncomms4755.PubMedCrossRefGoogle Scholar
  81. 81.
    Johansson H, Lindstedt M, Albrekt AS, Borrebaeck CA. A genomic biomarker signature can predict skin sensitizers using a cell-based in vitro alternative to animal tests. BMC Genomics. 2011;12:399. doi: 10.1186/1471-2164-12-399.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Stockinger B, Di Meglio P, Gialitakis M, Duarte JH. The aryl hydrocarbon receptor: multitasking in the immune system. Annu Rev Immunol. 2014;32:403–32. doi: 10.1146/annurev-immunol-032713-120245.PubMedCrossRefGoogle Scholar
  83. 83.
    Kalmes M, Blomeke B. Impact of eugenol and isoeugenol on AhR translocation, target gene expression, and proliferation in human HaCaT keratinocytes. J Toxicol Environ Health A. 2012;75(8–10):478–91. doi: 10.1080/15287394.2012.674916.PubMedCrossRefGoogle Scholar
  84. 84.
    Pasparakis M, Haase I, Nestle FO. Mechanisms regulating skin immunity and inflammation. Nat Rev Immunol. 2014;14(5):289–301. doi: 10.1038/nri3646.PubMedCrossRefGoogle Scholar
  85. 85.
    Kumari S, Herzberg B, Pofahl R, Krieg T, Haase I. Epidermal RelA specifically restricts contact allergen-induced inflammation and apoptosis in skin. J Invest Dermatol. 2014;134:2541–50. doi: 10.1038/jid.2014.193.PubMedCrossRefGoogle Scholar
  86. 86.
    Vogl T, Tenbrock K, Ludwig S, Leukert N, Ehrhardt C, van Zoelen MA, Nacken W, Foell D, van der Poll T, Sorg C, Roth J. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med. 2007;13(9):1042–9. doi: 10.1038/nm1638.PubMedCrossRefGoogle Scholar
  87. 87.
    Chan JK, Roth J, Oppenheim JJ, Tracey KJ, Vogl T, Feldmann M, Horwood N, Nanchahal J. Alarmins: awaiting a clinical response. J Clin Invest. 2012;122(8):2711–9. doi: 10.1172/JCI62423.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Petersen B, Wolf M, Austermann J, van Lent P, Foell D, Ahlmann M, Kupas V, Loser K, Sorg C, Roth J, Vogl T. The alarmin Mrp8/14 as regulator of the adaptive immune response during allergic contact dermatitis. EMBO J. 2013;32(1):100–11. doi: 10.1038/emboj.2012.309.PubMedCrossRefGoogle Scholar
  89. 89.
    Dubrac S, Schmuth M. PPAR-alpha in cutaneous inflammation. Dermatoendocrinol. 2011;3(1):23–6. doi: 10.4161/derm.3.1.14615.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Komuves LG, Hanley K, Man MQ, Elias PM, Williams ML, Feingold KR. Keratinocyte differentiation in hyperproliferative epidermis: topical application of PPARalpha activators restores tissue homeostasis. J Invest Dermatol. 2000;115(3):361–7. doi: 10.1046/j.1523-1747.2000.00076.x.PubMedCrossRefGoogle Scholar
  91. 91.
    Sheu MY, Fowler AJ, Kao J, Schmuth M, Schoonjans K, Auwerx J, Fluhr JW, Man MQ, Elias PM, Feingold KR. Topical peroxisome proliferator activated receptor-alpha activators reduce inflammation in irritant and allergic contact dermatitis models. J Invest Dermatol. 2002;118(1):94–101. doi: 10.1046/j.0022-202x.2001.01626.x.PubMedCrossRefGoogle Scholar
  92. 92.
    Dubrac S, Elentner A, Schoonjans K, Auwerx J, Schmuth M. Lack of IL-2 in PPAR-alpha-deficient mice triggers allergic contact dermatitis by affecting regulatory T cells. Eur J Immunol. 2011;41(7):1980–91. doi: 10.1002/eji.201041357.PubMedCrossRefGoogle Scholar
  93. 93.
    Petrosino S, Cristino L, Karsak M, Gaffal E, Ueda N, Tuting T, Bisogno T, De Filippis D, D'Amico A, Saturnino C, Orlando P, Zimmer A, Iuvone T, Di Marzo V. Protective role of palmitoylethanolamide in contact allergic dermatitis. Allergy. 2010;65(6):698–711. doi: 10.1111/j.1398-9995.2009.02254.x.PubMedCrossRefGoogle Scholar
  94. 94.
    Imaeda AB, Watanabe A, Sohail MA, Mahmood S, Mohamadnejad M, Sutterwala FS, Flavell RA, Mehal WZ. Acetaminophen-induced hepatotoxicity in mice is dependent on Tlr9 and the Nalp3 inflammasome. J Clin Invest. 2009;119(2):305–14. 35958 [pii]. doi: 10.1172/JCI35958.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Hoque R, Sohail MA, Salhanick S, Malik AF, Ghani A, Robson SC, Mehal WZ. P2X7 receptor-mediated purinergic signaling promotes liver injury in acetaminophen hepatotoxicity in mice. Am J Physiol Gastrointest Liver Physiol. 2012;302(10):G1171–9. ajpgi.00352.2011 [pii] 10.1152/ajpgi.00352.2011.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Nassini R, Materazzi S, Andre E, Sartiani L, Aldini G, Trevisani M, Carnini C, Massi D, Pedretti P, Carini M, Cerbai E, Preti D, Villetti G, Civelli M, Trevisan G, Azzari C, Stokesberry S, Sadofsky L, McGarvey L, Patacchini R, Geppetti P. Acetaminophen, via its reactive metabolite N-acetyl-p-benzo-quinoneimine and transient receptor potential ankyrin-1 stimulation, causes neurogenic inflammation in the airways and other tissues in rodents. FASEB J (Official Publication of the Federation of American Societies for Experimental Biology). 2010;24(12):4904–16. doi: 10.1096/fj.10-162438.CrossRefGoogle Scholar
  97. 97.
    Akdis M, Palomares O, van de Veen W, van Splunter M and Akdis CA. TH17 and TH22 cells: a confusion of antimicrobial response with tissue inflammation versus protection. J Allergy Clin Immunol. 2012;129(6):1438–49; quiz1450–1431. doi: 10.1016/j.jaci.2012.05.003.
  98. 98.
    Dearman RJ, Warbrick EV, Skinner R, Kimber I. Cytokine fingerprinting of chemical allergens: species comparisons and statistical analyses. Food Chem Toxicol (An International Journal Published for the British Industrial Biological Research Association). 2002;40(12):1881–92.CrossRefGoogle Scholar
  99. 99.
    Dearman RJ, Betts CJ, Caddick HT, Kimber I. Cytokine profiling of chemical allergens in mice: impact of mitogen on selectivity of response. J Appl Toxicol. 2009;29(3):233–41. doi: 10.1002/jat.1401.PubMedCrossRefGoogle Scholar
  100. 100.
    Hopkins JE, Naisbitt DJ, Kitteringham NR, Dearman RJ, Kimber I, Park BK. Selective haptenation of cellular or extracellular protein by chemical allergens: association with cytokine polarization. Chem Res Toxicol. 2005;18(2):375–81.PubMedCrossRefGoogle Scholar
  101. 101.
    Moggs JG, Terranova R, Kammuller ME, Chibout SD, Chapman V, Dearman RJ, Kimber I. Regulation of allergic responses to chemicals and drugs: possible roles of epigenetic mechanisms. Toxicol Sci. 2012;130(1):60–9. doi: 10.1093/toxsci/kfs207.PubMedCrossRefGoogle Scholar
  102. 102.
    Chapman VL, Zollinger T, Terranova R, Moggs J, Kimber I, Dearman RJ. Chemical allergen induced perturbations of the mouse lymph node DNA methylome. Toxicol Sci. 2014;139(2):350–61. doi: 10.1093/toxsci/kfu047.PubMedCrossRefGoogle Scholar
  103. 103.
    Proksch E, Brasch J. Abnormal epidermal barrier in the pathogenesis of contact dermatitis. Clin Dermatol. 2012;30(3):335–44. doi: 10.1016/j.clindermatol.2011.08.019.PubMedCrossRefGoogle Scholar
  104. 104.
    Grabbe S, Steinert M, Mahnke K, Schwartz A, Luger TA, Schwarz T. Dissection of antigenic and irritative effects of epicutaneously applied haptens in mice. Evidence that not the antigenic component but nonspecific proinflammatory effects of haptens determine the concentration-dependent elicitation of allergic contact dermatitis. J Clin Invest. 1996;98(5):1158–64. doi: 10.1172/JCI118899.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Watanabe H, Gehrke S, Contassot E, Roques S, Tschopp J, Friedmann PS, French LE, Gaide O. Danger signaling through the inflammasome acts as a master switch between tolerance and sensitization. J Immunol. 2008;180(9):5826–32. doi:180/9/5826[pii].PubMedCrossRefGoogle Scholar
  106. 106.
    de Jongh CM, Lutter R, Verberk MM, Kezic S. Differential cytokine expression in skin after single and repeated irritation by sodium lauryl sulphate. Exp Dermatol. 2007;16(12):1032–40. doi: 10.1111/j.1600-0625.2007.00628.x.PubMedCrossRefGoogle Scholar
  107. 107.
    Lee HY, Stieger M, Yawalkar N, Kakeda M. Cytokines and chemokines in irritant contact dermatitis. Mediators Inflamm. 2013;2013:916497. doi: 10.1155/2013/916497.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Ouwehand K, Santegoets SJ, Bruynzeel DP, Scheper RJ, de Gruijl TD, Gibbs S. CXCL12 is essential for migration of activated Langerhans cells from epidermis to dermis. Eur J Immunol. 2008;38(11):3050–9. doi: 10.1002/eji.200838384.PubMedCrossRefGoogle Scholar
  109. 109.
    Ouwehand K, Scheper RJ, de Gruijl TD, Gibbs S. Epidermis-to-dermis migration of immature Langerhans cells upon topical irritant exposure is dependent on CCL2 and CCL5. Eur J Immunol. 2010;40(7):2026–34. doi: 10.1002/eji.200940150.PubMedCrossRefGoogle Scholar
  110. 110.
    Nakashima C, Otsuka A, Kitoh A, Honda T, Egawa G, Nakajima S, Nakamizo S, Arita M, Kubo M, Miyachi Y, Kabashima K. Basophils regulate the recruitment of eosinophils in a murine model of irritant contact dermatitis. J Allergy Clin Immunol. 2014;134:100–7. doi: 10.1016/j.jaci.2014.02.026.PubMedCrossRefGoogle Scholar
  111. 111.
    Dvorak HF, Mihm Jr MC. Basophilic leukocytes in allergic contact dermatitis. J Exp Med. 1972;135(2):235–54.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Ito Y, Satoh T, Takayama K, Miyagishi C, Walls AF, Yokozeki H. Basophil recruitment and activation in inflammatory skin diseases. Allergy. 2011;66(8):1107–13. doi: 10.1111/j.1398-9995.2011.02570.x.PubMedCrossRefGoogle Scholar
  113. 113.
    Simon D, Aeberhard C, Erdemoglu Y, Simon HU. Th17 cells and tissue remodeling in atopic and contact dermatitis. Allergy. 2014;69(1):125–31. doi: 10.1111/all.12351.PubMedCrossRefGoogle Scholar
  114. 114.
    Uter W, Yazar K, Kratz EM, Mildau G, Liden C. Coupled exposure to ingredients of cosmetic products: I. Fragrances. Contact Dermatitis. 2013;69(6):335–41. doi: 10.1111/cod.12125.PubMedCrossRefGoogle Scholar
  115. 115.
    Uter W, Yazar K, Kratz EM, Mildau G, Liden C. Coupled exposure to ingredients of cosmetic products: II. Preservatives. Contact Dermatitis. 2014;70(4):219–26. doi: 10.1111/cod.12165.PubMedCrossRefGoogle Scholar
  116. 116.
    Uter W, Goncalo M, Yazar K, Kratz EM, Mildau G, Liden C. Coupled exposure to ingredients of cosmetic products: III. Ultraviolet filters. Contact Dermatitis. 2014;71:162–9. doi: 10.1111/cod.12245.PubMedCrossRefGoogle Scholar
  117. 117.
    Pedersen LK, Johansen JD, Held E, Agner T. Augmentation of skin response by exposure to a combination of allergens and irritants – a review. Contact Dermatitis. 2004;50(5):265–73. doi: 10.1111/j.0105-1873.2004.00342.x.PubMedCrossRefGoogle Scholar
  118. 118.
    Bonefeld CM, Nielsen MM, Rubin IM, Vennegaard MT, Dabelsteen S, Gimenez-Arnau E, Lepoittevin JP, Geisler C, Johansen JD. Enhanced sensitization and elicitation responses caused by mixtures of common fragrance allergens. Contact Dermatitis. 2011;65(6):336–42. doi: 10.1111/j.1600-0536.2011.01945.x.PubMedCrossRefGoogle Scholar
  119. 119.
    Kinbara M, Sato N, Kuroishi T, Takano-Yamamoto T, Sugawara S, Endo Y. Allergy-inducing nickel concentration is lowered by lipopolysaccharide at both the sensitization and elicitation steps in a murine model. Br J Dermatol. 2011;164(2):356–62. BJD10016 [pii]. doi: 10.1111/j.1365-2133.2010.10016.x.PubMedCrossRefGoogle Scholar
  120. 120.
    Agner T, Johansen JD, Overgaard L, Volund A, Basketter D, Menne T. Combined effects of irritants and allergens. Synergistic effects of nickel and sodium lauryl sulfate in nickel- sensitized individuals. Contact Dermatitis. 2002;47(1):21–6.PubMedCrossRefGoogle Scholar
  121. 121.
    Martin SF, Esser PR, Schmucker S, Dietz L, Naisbitt DJ, Park BK, Vocanson M, Nicolas JF, Keller M, Pichler WJ, Peiser M, Luch A, Wanner R, Maggi E, Cavani A, Rustemeyer T, Richter A, Thierse HJ, Sallusto F. T-cell recognition of chemicals, protein allergens and drugs: towards the development of in vitro assays. Cell Mol Life Sci. 2010;67(24):4171–84. doi: 10.1007/s00018-010-0495-3.PubMedCrossRefGoogle Scholar
  122. 122.
    Lu L, Vollmer J, Moulon C, Weltzien HU, Marrack P, Kappler J. Components of the ligand for a Ni++ reactive human T cell clone. J Exp Med. 2003;197(5):567–74.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Gamerdinger K, Moulon C, Karp DR, Van Bergen J, Koning F, Wild D, Pflugfelder U, Weltzien HU. A new type of metal recognition by human T cells: contact residues for peptide-independent bridging of T cell receptor and major histocompatibility complex by nickel. J Exp Med. 2003;197(10):1345–53. doi: 10.1084/jem.20030121jem.20030121[pii].PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Peiser M. Role of Th17 cells in skin inflammation of allergic contact dermatitis. Clin Dev Immunol. 2013;2013:261037. doi: 10.1155/2013/261037.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Cavani A, Pennino D, Eyerich K. Th17 and Th22 in skin allergy. Chem Immunol Allergy. 2012;96:39–44. doi: 10.1159/000331870.PubMedCrossRefGoogle Scholar
  126. 126.
    Nielsen MM, Lovato P, MacLeod AS, Witherden DA, Skov L, Dyring-Andersen B, Dabelsteen S, Woetmann A, Odum N, Havran WL, Geisler C, Bonefeld CM. IL-1beta-dependent activation of dendritic epidermal T cells in contact hypersensitivity. J Immunol. 2014;192(7):2975–83. doi: 10.4049/jimmunol.1301689.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Mizukami J, Sato T, Camps M, Ji H, Rueckle T, Swinnen D, Tsuboi R, Takeda K, Ichijo H. ASK1 promotes the contact hypersensitivity response through IL-17 production. Scientific reports. 2014;4:4714. doi: 10.1038/srep04714.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Hennino A, Jean-Decoster C, Giordano-Labadie F, Debeer S, Vanbervliet B, Rozieres A, Schmitt AM, Nicolas JF. CD8+ T cells are recruited early to allergen exposure sites in atopy patch test reactions in human atopic dermatitis. J Allergy Clin Immunol. 2011;127(4):1064–7. S0091-6749(10)01837-3 [pii]. doi: 10.1016/j.jaci.2010.11.022.PubMedCrossRefGoogle Scholar
  129. 129.
    Carbone T, Nasorri F, Pennino D, Eyerich K, Foerster S, Cifaldi L, Traidl-Hoffman C, Behrendt H, Cavani A. CD56highCD16-CD62L- NK cells accumulate in allergic contact dermatitis and contribute to the expression of allergic responses. J Immunol. 2010;184(2):1102–10. doi: 10.4049/jimmunol.0902518.PubMedCrossRefGoogle Scholar
  130. 130.
    O'Leary JG, Goodarzi M, Drayton DL, von Andrian UH. T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nat Immunol. 2006;7(5):507–16. ni1332 [pii]. doi: 10.1038/ni1332.PubMedCrossRefGoogle Scholar
  131. 131.
    Paust S, Gill HS, Wang BZ, Flynn MP, Moseman EA, Senman B, Szczepanik M, Telenti A, Askenase PW, Compans RW, von Andrian UH. Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specific memory of haptens and viruses. Nat Immunol. 2010;11(12):1127–35. doi: 10.1038/ni.1953.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Rouzaire P, Luci C, Blasco E, Bienvenu J, Walzer T, Nicolas JF, Hennino A. Natural killer cells and T cells induce different types of skin reactions during recall responses to haptens. Eur J Immunol. 2011;42:80–8. doi: 10.1002/eji.201141820.PubMedCrossRefGoogle Scholar
  133. 133.
    Vocanson M, Rozieres A, Hennino A, Poyet G, Gaillard V, Renaudineau S, Achachi A, Benetiere J, Kaiserlian D, Dubois B, Nicolas JF. Inducible costimulator (ICOS) is a marker for highly suppressive antigen-specific T cells sharing features of TH17/TH1 and regulatory T cells. J Allergy Clin Immunol. 2010;126(2):280–9. 289.e281–287. S0091-6749(10)00827-4 [pii]. doi: 10.1016/j.jaci.2010.05.022.PubMedCrossRefGoogle Scholar
  134. 134.
    Goubier A, Vocanson M, Macari C, Poyet G, Herbelin A, Nicolas JF, Dubois B, Kaiserlian D. Invariant NKT cells suppress CD8(+) T-cell-mediated allergic contact dermatitis independently of regulatory CD4(+) T cells. J Invest Dermatol. 2013;133(4):980–7. doi: 10.1038/jid.2012.404.PubMedCrossRefGoogle Scholar
  135. 135.
    Liu J, Harberts E, Tammaro A, Girardi N, Filler RB, Fishelevich R, Temann A, Licona-Limon P, Girardi M, Flavell RA, Gaspari AA. IL-9 regulates allergen-specific Th1 responses in allergic contact dermatitis. J Invest Dermatol. 2014;134(7):1903–11. doi: 10.1038/jid.2014.61.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Dhingra N, Shemer A, Correa da Rosa J, Rozenblit M, Fuentes-Duculan J, Gittler JK, Finney R, Czarnowicki T, Zheng X, Xu H, Estrada YD, Cardinale I, Suarez-Farinas M, Krueger JG, Guttman-Yassky E. Molecular profiling of contact dermatitis skin identifies allergen-dependent differences in immune response. J Allergy Clin Immunol. 2014;134(2):362–72. doi: 10.1016/j.jaci.2014.03.009.PubMedCrossRefGoogle Scholar
  137. 137.
    Marth K, Focke-Tejkl M, Lupinek C, Valenta R, Niederberger V. Allergen Peptides, Recombinant Allergens and Hypoallergens for Allergen-Specific Immunotherapy. Curr Treat Options Allergy. 2014;1:91–106. doi: 10.1007/s40521-013-0006-5.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Cavkaytar O, Akdis CA, Akdis M. Modulation of immune responses by immunotherapy in allergic diseases. Curr Opin Pharmacol. 2014;17C:30–7. doi: 10.1016/j.coph.2014.07.003.CrossRefGoogle Scholar
  139. 139.
    Spiewak R. Immunotherapy of allergic contact dermatitis. Immunotherapy. 2011;3(8):979–96. doi: 10.2217/imt.11.89.PubMedCrossRefGoogle Scholar
  140. 140.
    Luckey U, Schmidt T, Pfender N, Romer M, Lorenz N, Martin SF, Bopp T, Schmitt E, Nikolaev A, Yogev N, Waisman A, Jakob T, Steinbrink K. Interplay between CD4 + CD25+ regulatory T cells, tolerogenic CD11c + dendritic cells and CD8+ suppressor T cells is critical for tolerance to contact allergens. J Allergy Clin Immunol. 2012;130:781–91.e711.PubMedCrossRefGoogle Scholar
  141. 141.
    Luckey U, Maurer M, Schmidt T, Lorenz N, Seebach B, Metz M, Steinbrink K. T cell killing by tolerogenic dendritic cells protects mice from allergy. J Clin Invest. 2011;121(10):3860–71. 45963 [pii]. doi: 10.1172/JCI45963.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Esser PR, Kimber I, Martin SF. Correlation of contact sensitizer potency with T cell frequency and TCR repertoire diversity. Exs. 2014;104:101–14. doi: 10.1007/978-3-0348-0726-5_8.PubMedGoogle Scholar
  143. 143.
    Quaranta M, Knapp B, Garzorz N, Mattii M, Pullabhatla V, Pennino D, Andres C, Traidl-Hoffmann C, Cavani A, Theis FJ, Ring J, Schmidt-Weber CB, Eyerich S and Eyerich K. Intraindividual genome expression analysis reveals a specific molecular signature of psoriasis and eczema. Sci Transl Med. 2014;6(244):244ra290. doi: 10.1126/scitranslmed.3008946.
  144. 144.
    Clemmensen A, Andersen KE, Clemmensen O, Tan Q, Petersen TK, Kruse TA, Thomassen M. Genome-wide expression analysis of human in vivo irritated epidermis: differential profiles induced by sodium lauryl sulfate and nonanoic acid. J Invest Dermatol. 2010;130(9):2201–10. doi: 10.1038/jid.2010.102.PubMedCrossRefGoogle Scholar
  145. 145.
    Maxwell G, MacKay C, Cubberley R, Davies M, Gellatly N, Glavin S, Gouin T, Jacquoilleot S, Moore C, Pendlington R, Saib O, Sheffield D, Stark R, Summerfield V. Applying the skin sensitisation adverse outcome pathway (AOP) to quantitative risk assessment. Toxicol In Vitro. 2014;28(1):8–12. doi: 10.1016/j.tiv.2013.10.013.PubMedCrossRefGoogle Scholar
  146. 146.
    Bauch C, Kolle SN, Ramirez T, Eltze T, Fabian E, Mehling A, Teubner W, van Ravenzwaay B, Landsiedel R. Putting the parts together: combining in vitro methods to test for skin sensitizing potentials. Regul Toxicol Pharmacol. 2012;63(3):489–504. doi: 10.1016/j.yrtph.2012.05.013.PubMedCrossRefGoogle Scholar
  147. 147.
    van der Veen JW, Rorije E, Emter R, Natsch A, van Loveren H, Ezendam J. Evaluating the performance of integrated approaches for hazard identification of skin sensitizing chemicals. Regul Toxicol Pharmacol. 2014;69(3):371–9. doi: 10.1016/j.yrtph.2014.04.018.PubMedCrossRefGoogle Scholar
  148. 148.
    Basketter DA, Alepee N, Ashikaga T, Barroso J, Gilmour N, Goebel C, Hibatallah J, Hoffmann S, Kern P, Martinozzi-Teissier S, Maxwell G, Reisinger K, Sakaguchi H, Schepky A, Tailhardat M, Templier M. Categorization of chemicals according to their relative human skin sensitizing potency. Dermatitis. 2014;25(1):11–21. doi: 10.1097/DER.0000000000000003.PubMedCrossRefGoogle Scholar
  149. 149.
    Thyssen JP, Gimenez-Arnau E, Lepoittevin JP, Menne T, Boman A, Schnuch A. The critical review of methodologies and approaches to assess the inherent skin sensitization potential (skin allergies) of chemicals. Part III. Contact Dermatitis. 2012;66 Suppl 1:53–70. doi: 10.1111/j.1600-0536.2011.02004_4.x.PubMedCrossRefGoogle Scholar
  150. 150.
    Thyssen JP, Gimenez-Arnau E, Lepoittevin JP, Menne T, Boman A, Schnuch A. The critical review of methodologies and approaches to assess the inherent skin sensitization potential (skin allergies) of chemicals. Part II. Contact Dermatitis. 2012;66 Suppl 1:25–52. doi: 10.1111/j.1600-0536.2011.02004_3.x.PubMedCrossRefGoogle Scholar
  151. 151.
    Thyssen JP, Gimenez-Arnau E, Lepoittevin JP, Menne T, Boman A, Schnuch A. The critical review of methodologies and approaches to assess the inherent skin sensitization potential (skin allergies) of chemicals. Part I. Contact Dermatitis. 2012;66 Suppl 1:11–24. doi: 10.1111/j.1600-0536.2011.02004_2.x.PubMedCrossRefGoogle Scholar
  152. 152.
    Goebel C, Troutman J, Hennen J, Rothe H, Schlatter H, Gerberick GF, Blomeke B. Introduction of a methoxymethyl side chain into p-phenylenediamine attenuates its sensitizing potency and reduces the risk of allergy induction. Toxicol Appl Pharmacol. 2014;274(3):480–7. doi: 10.1016/j.taap.2013.11.016.PubMedCrossRefGoogle Scholar
  153. 153.
    O'Boyle NM, Niklasson IB, Tehrani-Bagha AR, Delaine T, Holmberg K, Luthman K, Karlberg AT. Epoxy resin monomers with reduced skin sensitizing potency. Chem Res Toxicol. 2014;27(6):1002–10. doi: 10.1021/tx5000624.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of DermatologyMedical Center – University of FreiburgFreiburgGermany
  2. 2.Department of Dermatology and AllergologyJustus Liebig Universtiy Gießen, Universtiy Medical Center GießenMarburgGermany

Personalised recommendations