Physiological Aspects of Marathon Running

Chapter

Abstract

Marathon running has evolved as one of the world’s popular running experiences. Independent of the runner’s performance level the marathon event represent a major challenge to the runner’s biology. Multiple integrated physiological processes operate to resist fatigue during marathon running. The physical preparation for a marathon involves a series of complex biological adaptations to counteract exercise induced fatigue. The following chapter aims at describing important physiological components that are proposed to constrain a champion’s physiological capacity for ultimate endurance performance. Further, potential limiting factors of the lungs, cardio-vascular system, blood oxygen carrying capacity, muscle properties and metabolism are explained in order to understand the underlying mechanisms for developing specific training methods and to estimate the race pace during marathon running. Other important biological aspects involved in marathon running such as nutrition, thermoregulation, biomechanics will be discusses in detail in the following chapters.

Keywords

Marathon Oxygen uptake Central limitations Pulmonary diffusion Blood oxygen carrying capacity Muscle adaptation Lactate threshold Substrate regulation Running Running economy 

References

  1. Akimoto T, Pohnert SC, Li P, Zhang M, Gumbs C, Rosenberg PB, Williams RS, Yan Z (2005) Exercise stimulates Pgc-1alpha transcription in skeletal muscle through activation of the p38 MAPK pathway. J Biol Chem 280(20):19587–19593. doi:10.1074/jbc.M408862200 CrossRefPubMedGoogle Scholar
  2. Barnes KR, Kilding AE (2015) Strategies to improve running economy. Sports Med 45(1):37–56. doi:10.1007/s40279-014-0246-y CrossRefPubMedGoogle Scholar
  3. Bassel-Duby R, Olson EN (2006) Signaling pathways in skeletal muscle remodeling. Annu Rev Biochem 75:19–37. doi:10.1146/annurev.biochem.75.103004.142622 CrossRefPubMedGoogle Scholar
  4. Bassett DR Jr (2002) Scientific contributions of A. V. Hill: exercise physiology pioneer. J Appl Physiol (1985) 93(5):1567–1582. doi:10.1152/japplphysiol.01246.2001
  5. Bassett DR Jr, Howley ET (2000) Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc 32(1):70–84CrossRefPubMedGoogle Scholar
  6. Billat LV (2001) Interval training for performance: a scientific and empirical practice. Special recommendations for middle- and long-distance running. Part II: anaerobic interval training. Sports Med 31(2):75–90CrossRefPubMedGoogle Scholar
  7. Bizeau ME, Willis WT, Hazel JR (1998) Differential responses to endurance training in subsarcolemmal and intermyofibrillar mitochondria. J Appl Physiol 85(4):1279–1284PubMedGoogle Scholar
  8. Bouchard C, Lesage R, Lortie G, Simoneau JA, Hamel P, Boulay MR, Perusse L, Theriault G, Leblanc C (1986) Aerobic performance in brothers, dizygotic and monozygotic twins. Med Sci Sports Exerc 18(6):639–646CrossRefPubMedGoogle Scholar
  9. Bouchard C, Rankinen T, Timmons JA (2011) Genomics and genetics in the biology of adaptation to exercise. Compr Physiol 1(3):1603–1648. doi:10.1002/cphy.c100059 PubMedPubMedCentralGoogle Scholar
  10. Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, Macdonald MJ, McGee SL, Gibala MJ (2008) Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol 586(1):151–160. doi:10.1113/jphysiol.2007.142109 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cairns SP (2006) Lactic acid and exercise performance: culprit or friend? Sports Med 36(4):279–291CrossRefPubMedGoogle Scholar
  12. Cheuvront SN, Haymes EM (2001) Thermoregulation and marathon running: biological and environmental influences. Sports Med 31(10):743–762CrossRefPubMedGoogle Scholar
  13. Conley DL, Krahenbuhl GS (1980) Running economy and distance running performance of highly trained athletes. Med Sci Sports Exerc 12(5):357–360CrossRefPubMedGoogle Scholar
  14. Conley KGSBLE et al (1984) Following Steve Scott: physiological changes accompanying training. Phys Sports Med 12(1):103–106Google Scholar
  15. Costill DL (1970) Metabolic responses during distance running. J Appl Physiol 28(3):251–255PubMedGoogle Scholar
  16. Costill DL, Flynn MG, Kirwan JP, Houmard JA, Mitchell JB, Thomas R, Park SH (1988) Effects of repeated days of intensified training on muscle glycogen and swimming performance. Med Sci Sports Exerc 20(3):249–254CrossRefPubMedGoogle Scholar
  17. Costill DL, Thomas R, Robergs RA, Pascoe D, Lambert C, Barr S, Fink WJ (1991) Adaptations to swimming training: influence of training volume. Med Sci Sports Exerc 23(3):371–377CrossRefPubMedGoogle Scholar
  18. Costill DL, Thomason H, Roberts E (1973) Fractional utilization of the aerobic capacity during distance running. Med Sci Sports 5(4):248–252PubMedGoogle Scholar
  19. Coyle EF (1999) Physiological determinants of endurance exercise performance. J Sci Med Sport 2(3):181–189CrossRefPubMedGoogle Scholar
  20. Coyle EF, Feltner ME, Kautz SA, Hamilton MT, Montain SJ, Baylor AM, Abraham LD, Petrek GW (1991) Physiological and biomechanical factors associated with elite endurance cycling performance. Med Sci Sports Exerc 23(1):93–107CrossRefPubMedGoogle Scholar
  21. Coyle EF, Hagberg JM, Hurley BF, Martin WH, Ehsani AA, Holloszy JO (1983) Carbohydrate feeding during prolonged strenuous exercise can delay fatigue. J Appl Physiol Respir Environ Exerc Physiol 55(1 Pt 1):230–235PubMedGoogle Scholar
  22. Coyle EF, Montain SJ (1992) Carbohydrate and fluid ingestion during exercise: are there trade-offs? Med Sci Sports Exerc 24(6):671–678CrossRefPubMedGoogle Scholar
  23. Daussin FN, Ponsot E, Dufour SP, Lonsdorfer-Wolf E, Doutreleau S, Geny B, Piquard F, Richard R (2007) Improvement of VO2max by cardiac output and oxygen extraction adaptation during intermittent versus continuous endurance training. Eur J Appl Physiol 101(3):377–383. doi:10.1007/s00421-007-0499-3 CrossRefPubMedGoogle Scholar
  24. Daussin FN, Zoll J, Ponsot E, Dufour SP, Doutreleau S, Lonsdorfer E, Ventura-Clapier R, Mettauer B, Piquard F, Geny B, Richard R (2008) Training at high exercise intensity promotes qualitative adaptations of mitochondrial function in human skeletal muscle. J Appl Physiol 104(5):1436–1441. doi:10.1152/japplphysiol.01135.2007 01135.2007[pii]CrossRefPubMedGoogle Scholar
  25. Dempsey JA, Hanson PG, Henderson KS (1984) Exercise-induced arterial hypoxaemia in healthy human subjects at sea level. J Physiol 355:161–175CrossRefPubMedPubMedCentralGoogle Scholar
  26. di Prampero PE, Atchou G, Bruckner JC, Moia C (1986) The energetics of endurance running. Eur J Appl Physiol Occup Physiol 55(3):259–266CrossRefPubMedGoogle Scholar
  27. Duffield R, Dawson B, Goodman C (2005a) Energy system contribution to 400-metre and 800-metre track running. J Sports Sci 23(3):299–307. doi:10.1080/02640410410001730043 CrossRefPubMedGoogle Scholar
  28. Duffield R, Dawson B, Goodman C (2005b) Energy system contribution to 1500- and 3000-metre track running. J Sports Sci 23(10):993–1002. doi:10.1080/02640410400021963 CrossRefPubMedGoogle Scholar
  29. Foster C, Lucia A (2007) Running economy: the forgotten factor in elite performance. Sports Med (Auckland, NZ) 37 (4–5):316-319Google Scholar
  30. Gibala MJ, Little JP, van Essen M, Wilkin GP, Burgomaster KA, Safdar A, Raha S, Tarnopolsky MA (2006) Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol 575(Pt 3):901–911. doi:10.1113/jphysiol.2006.112094 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Gibson AS, Lambert MI, Noakes TD (2001) Neural control of force output during maximal and submaximal exercise. Sports Med 31(9):637–650CrossRefGoogle Scholar
  32. Green HJ (1997) Mechanisms of muscle fatigue in intense exercise. J Sports Sci 15(3):247–256. doi:10.1080/026404197367254 CrossRefPubMedGoogle Scholar
  33. Green HJ, Jones LL, Hughson RL, Painter DC, Farrance BW (1987) Training-induced hypervolemia: lack of an effect on oxygen utilization during exercise. Med Sci Sports Exerc 19(3):202–206CrossRefPubMedGoogle Scholar
  34. Green HJ, Jones LL, Painter DC (1990) Effects of short-term training on cardiac function during prolonged exercise. Med Sci Sports Exerc 22(4):488–493CrossRefPubMedGoogle Scholar
  35. Hagerman FC (1984) Applied physiology of rowing. Sports Med 1(4):303–326CrossRefPubMedGoogle Scholar
  36. Hampson DB, St Clair Gibson A, Lambert MI, Noakes TD (2001) The influence of sensory cues on the perception of exertion during exercise and central regulation of exercise performance. Sports Med 31(13):935–952CrossRefPubMedGoogle Scholar
  37. Hawley JA (2002) Adaptations of skeletal muscle to prolonged, intense endurance training. Clin Exp Pharmacol Physiol 29(3):218–222CrossRefPubMedGoogle Scholar
  38. Hawley JA, Burke LM, Phillips SM, Spriet LL (2011) Nutritional modulation of training-induced skeletal muscle adaptations. J Appl Physiol (1985) 110(3):834–845. doi:10.1152/japplphysiol.00949.2010 CrossRefGoogle Scholar
  39. Helgerud J, Hoydal K, Wang E, Karlsen T, Berg P, Bjerkaas M, Simonsen T, Helgesen C, Hjorth N, Bach R, Hoff J (2007) Aerobic high-intensity intervals improve VO2max more than moderate training. Med Sci Sports Exerc 39(4):665–671. doi:10.1249/mss.0b013e3180304570 CrossRefPubMedGoogle Scholar
  40. Henriksson J (1992) Effects of physical training on the metabolism of skeletal muscle. Diabetes Care 15(11):1701–1711CrossRefPubMedGoogle Scholar
  41. Hickson RC, Hagberg JM, Ehsani AA, Holloszy JO (1981) Time course of the adaptive responses of aerobic power and heart rate to training. Med Sci Sports Exerc 13(1):17–20PubMedGoogle Scholar
  42. Holloszy JO (1967) Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem 242(9):2278–2282PubMedGoogle Scholar
  43. Holloszy JO, Rennie MJ, Hickson RC, Conlee RK, Hagberg JM (1977) Physiological consequences of the biochemical adaptations to endurance exercise. Ann N Y Acad Sci 301:440–450CrossRefPubMedGoogle Scholar
  44. Hoppeler H, Weibel ER (2000) Structural and functional limits for oxygen supply to muscle. Acta Physiol Scand 168(4):445–456CrossRefPubMedGoogle Scholar
  45. Hunter AM, St Clair Gibson A, Lambert MI, Nobbs L, Noakes TD (2003) Effects of supramaximal exercise on the electromyographic signal. Br J Sports Med 37(4):296–299CrossRefPubMedPubMedCentralGoogle Scholar
  46. Jones AM (2006) The physiology of the women’s world record holder for the women’s marathon. Int J Sports Sci Coaching 1(2):101–116CrossRefGoogle Scholar
  47. Joyner MJ, Coyle EF (2008) Endurance exercise performance: the physiology of champions. J Physiol 586(1):35–44. doi:10.1113/jphysiol.2007.143834 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Joyner MJ, Ruiz JR, Lucia A (2011) The two-hour marathon: who and when? J Appl Physiol (1985) 110(1):275–277. doi:10.1152/japplphysiol.00563.2010 CrossRefPubMedGoogle Scholar
  49. Kay D, Marino FE (2000) Fluid ingestion and exercise hyperthermia: implications for performance, thermoregulation, metabolism and the development of fatigue. J Sports Sci 18(2):71–82. doi:10.1080/026404100365135 CrossRefPubMedGoogle Scholar
  50. Kay D, Marino FE, Cannon J, St Clair Gibson A, Lambert MI, Noakes TD (2001) Evidence for neuromuscular fatigue during high-intensity cycling in warm, humid conditions. Eur J Appl Physiol 84(1–2):115–121. doi:10.1007/s004210000340 CrossRefPubMedGoogle Scholar
  51. Kirkendall DT, Garrett WE Jr (1998) The effects of aging and training on skeletal muscle. Am J Sports Med 26(4):598–602PubMedGoogle Scholar
  52. Kusuhara K, Madsen K, Jensen L, Hellsten Y, Pilegaard H (2007) Calcium signalling in the regulation of PGC-1alpha, PDK4 and HKII mRNA expression. Biol Chem 388(5):481–488. doi:10.1515/BC.2007.052 CrossRefPubMedGoogle Scholar
  53. Lake MJ, Cavanagh PR (1996) Six weeks of training does not change running mechanics or improve running economy. Med Sci Sports Exerc 28(7):860–869CrossRefPubMedGoogle Scholar
  54. Laursen PB, Jenkins DG (2002) The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med 32(1):53–73CrossRefPubMedGoogle Scholar
  55. Linossier MT, Denis C, Dormois D, Geyssant A, Lacour JR (1993) Ergometric and metabolic adaptation to a 5-s sprint training programme. Eur J Appl Physiol 67(5):408–414CrossRefGoogle Scholar
  56. Londeree BR (1997) Effect of training on lactate/ventilatory thresholds: a meta-analysis. Med Sci Sports Exerc 29(6):837–843CrossRefPubMedGoogle Scholar
  57. Lucia A, Olivan J, Bravo J, Gonzalez-Freire M, Foster C (2008) The key to top-level endurance running performance: a unique example. British J Sports Med 42 (3):172–174; discussion 174. doi:10.1136/bjsm.2007.040725
  58. Midgley AW, McNaughton LR, Jones AM (2007) Training to enhance the physiological determinants of long-distance running performance: can valid recommendations be given to runners and coaches based on current scientific knowledge? Sports Med 37(10):857–880 37103 [pii]CrossRefPubMedGoogle Scholar
  59. Millet G, Lepers R, Lattier G, Martin V, Babault N, Maffiuletti N (2000) Influence of ultra-long-term fatigue on the oxygen cost of two types of locomotion. Eur J Appl Physiol 83(4–5):376–380CrossRefPubMedGoogle Scholar
  60. Millet GY, Lepers R, Maffiuletti NA, Babault N, Martin V, Lattier G (2002) Alterations of neuromuscular function after an ultramarathon. J Appl Physiol 92(2):486–492. doi:10.1152/japplphysiol.00122.2001 CrossRefPubMedGoogle Scholar
  61. Murray R (1998) Rehydration strategies–balancing substrate, fluid, and electrolyte provision. Int J Sports Med 19(Suppl 2):S133–S135. doi:10.1055/s-2007-971978 CrossRefPubMedGoogle Scholar
  62. Nagashima J, Musha H, Takada H, Murayama M (2003) New upper limit of physiologic cardiac hypertrophy in Japanese participants in the 100-km ultramarathon. J Am Coll Cardiol 42(9):1617–1623CrossRefPubMedGoogle Scholar
  63. Nelson RC, Gregor RJ (1976) Biomechanics of distance running: a longitudinal study. Res Quarterly 47(3):417–428Google Scholar
  64. Noakes TD (2000) Physiological models to understand exercise fatigue and the adaptations that predict or enhance athletic performance. Scand J Med Sci Sports 10(3):123–145CrossRefPubMedGoogle Scholar
  65. Noakes TD (2007) The central governor model of exercise regulation applied to the marathon. Sports Med 37(4–5):374–377CrossRefPubMedGoogle Scholar
  66. O’Brien MJ, Viguie CA, Mazzeo RS, Brooks GA (1993) Carbohydrate dependence during marathon running. Med Sci Sports Exerc 25(9):1009–1017CrossRefPubMedGoogle Scholar
  67. Pavlik G, Major Z, Csajagi E, Jeserich M, Kneffel Z (2013) The athlete’s heart Part II Influencing factors on the athlete’s heart: Types of sports and age (Review). Acta Physiol Hung 100(1):1–27 10.1556/APhysiol. 100.2013.1.1CrossRefPubMedGoogle Scholar
  68. Pinniger GJ, Steele JR, Groeller H (2000) Does fatigue induced by repeated dynamic efforts affect hamstring muscle function? Med Sci Sport Exer 32(3):647–653. doi:10.1097/00005768-200003000-00015 CrossRefGoogle Scholar
  69. Powers SK, Lawler J, Dempsey JA, Dodd S (1985) Landry G (1989) Effects of incomplete pulmonary gas exchange on VO2 max. J Appl Physiol 66(6):2491–2495Google Scholar
  70. Pringle JS, Doust JH, Carter H, Tolfrey K, Campbell IT, Sakkas GK, Jones AM (2003) Oxygen uptake kinetics during moderate, heavy and severe intensity “submaximal” exercise in humans: the influence of muscle fibre type and capillarisation. Eur J Appl Physiol 89(3–4):289–300. doi:10.1007/s00421-003-0799-1 CrossRefPubMedGoogle Scholar
  71. Robergs RA, Ghiasvand F, Parker D (2004) Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol 287(3):R502–R516. doi:10.1152/ajpregu.00114.2004 CrossRefPubMedGoogle Scholar
  72. Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E, Wolfe RR (1993) Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol 265(3 Pt 1):E380–E391PubMedGoogle Scholar
  73. Saltin B, Henriksson J, Nygaard E, Andersen P, Jansson E (1977) Fiber types and metabolic potentials of skeletal muscles in sedentary man and endurance runners. Ann N Y Acad Sci 301:3–29CrossRefPubMedGoogle Scholar
  74. Saunders PU, Pyne DB, Telford RD, Hawley JA (2004) Factors affecting running economy in trained distance runners. Sports Med (Auckland, NZ) 34 (7):465–485Google Scholar
  75. Scharhag-Rosenberger F, Meyer T, Gassler N, Faude O, Kindermann W (2010) Exercise at given percentages of VO2max: heterogeneous metabolic responses between individuals. J Sci Med Sport/Sports Med Australia 13(1):74–79. doi:10.1016/j.jsams.2008.12.626 CrossRefGoogle Scholar
  76. Serpiello FR, McKenna MJ, Bishop DJ, Aughey RJ, Caldow MK, Cameron-Smith D, Stepto NK (2011) Repeated sprints alter signalling related to mitochondrial biogenesis in humans. Med Sci Sports Exerc. doi:10.1249/MSS.0b013e318240067e Google Scholar
  77. Sherman WM, Costill DL (1984) The marathon: dietary manipulation to optimize performance. Am J sports Med 12(1):44–51CrossRefPubMedGoogle Scholar
  78. Sjodin B, Svedenhag J (1985) Applied physiology of marathon running. Sports Med 2(2):83–99CrossRefPubMedGoogle Scholar
  79. Spriet LL (2007) Regulation of substrate use during the marathon. Sports Med 37(4–5):332–336CrossRefPubMedGoogle Scholar
  80. St Clair Gibson A, Schabort EJ, Noakes TD (2001) Reduced neuromuscular activity and force generation during prolonged cycling. Am J Physiol Regul Integr Comp Physiol 281(1):R187–R196PubMedGoogle Scholar
  81. Stepto NK, Martin DT, Fallon KE, Hawley JA (2001) Metabolic demands of intense aerobic interval training in competitive cyclists. Med Sci Sports Exerc 33(2):303–310CrossRefPubMedGoogle Scholar
  82. Svedenhag J, Sjödin B (1985) Physiological characteristics of elite male runners in and off-season. Canadian journal of applied sport sciences Journal canadien des sciences appliquées au sport 10(3):127–133PubMedGoogle Scholar
  83. Thompson PD (2007) Cardiovascular adaptations to marathon running: the marathoner’s heart. Sports Med 37(4–5):444–447CrossRefPubMedGoogle Scholar
  84. Tonkonogi M, Walsh B, Svensson M, Sahlin K (2000) Mitochondrial function and antioxidative defence in human muscle: effects of endurance training and oxidative stress. J Physiol 528(Pt 2):379–388CrossRefPubMedPubMedCentralGoogle Scholar
  85. Underwood RH, Schwade JL (1977) Noninvasive analysis of cardiac function of elite distance runners–echocardiography, vectorcardiography, and cardiac intervals. Ann N Y Acad Sci 301:297–309CrossRefPubMedGoogle Scholar
  86. van Loon LJ, Greenhaff PL, Constantin-Teodosiu D, Saris WH, Wagenmakers AJ (2001) The effects of increasing exercise intensity on muscle fuel utilisation in humans. J Physiol 536(Pt 1):295–304CrossRefPubMedPubMedCentralGoogle Scholar
  87. Wilmore JH, Costill DL (1999) Physiology of sport and exercise, 2nd edn. Human Kinetics, Champaign, ILGoogle Scholar
  88. Wojtaszewski JF, Richter EA (1998) Glucose utilization during exercise: influence of endurance training. Acta Physiol Scand 162(3):351–358. doi:10.1046/j.1365-201X.1998.0322e.x CrossRefPubMedGoogle Scholar
  89. Zierath JR, Hawley JA (2004) Skeletal muscle fiber type: influence on contractile and metabolic properties. PLoS Biol 2(10):e348. doi:10.1371/journal.pbio.0020348 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Zinner C, Sperlich B, Wahl P, Mester J (2015) Classification of selected cardiopulmonary variables of elite athletes of different age, gender, and disciplines during incremental exercise testing. SpringerPlus 4:544. doi:10.1186/s40064-015-1341-8 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Sport Science-Integrative and Experimental Training ScienceJulius Maximilians University WürzburgWürzburgGermany

Personalised recommendations