Obstructed Labour: The Classic Obstetric Dilemma and Beyond

  • Emma Pomeroy
  • Jonathan C. K. Wells
  • Jay T. Stock
Chapter
Part of the Advances in the Evolutionary Analysis of Human Behaviour book series (AEAHB)

Abstract

The obstetric dilemma (OD) proposes that women have a prolonged, painful childbirth with high risks of obstructed labour and consequent maternal and neonatal deaths because our species’ large brain size and bipedal gait place opposing selective pressures on pelvic size and shape. While widely cited in the anthropological and medical literature, there is growing evidence that obstructed labour is not an inevitable consequence of the OD but a problem that has waxed and waned, tracking temporal changes in phenotype, lifestyle and environment. This implies that obstructed labour is not an inevitable character of our species and that mediation of the environment (diet, activity, health) and changes in birth posture can potentially reduce obstetric complications in the short and longer term. In addition, it may be possible to better assess individual risk by evaluating parental and offspring phenotype.

Keywords

Obstetric dilemma Encephalisation Pelvis Obstructed labour Cephalopelvic disproportion Stature 

Notes

Glossary

Cephalopelvic disproportion

The infant’s head is too large to pass through the bony birth canal of the mother’s pelvis, necessitating Caesarean delivery

Obstructed labour

Where labour fails to progress as a result of mechanical problems, e.g., cephalopelvic disproportion, shoulder dystocia or malpresentation of the foetus, which prevent its passage through the birth canal [2]

Phenotype

The physical characteristics of an individual, population or species. They represent the interplay of genetic and environmental influences on the body

Plasticity

The degree to which a given biological characteristic can be modified in response to environmental factors. Characteristics that are more responsive to the environment, and so less strongly genetically determined, are described as plastic

Shoulder dystocia

During labour, the shoulder is trapped behind the maternal pelvis (typically the pubic symphysis, or the sacrum) following passage of the head

References

  1. 1.
    Washburn SL (1960) Tools and human evolution. Sci Am 203:63–75CrossRefPubMedGoogle Scholar
  2. 2.
    Neilson J, Lavender T, Quenby S, Wray S (2003) Obstructed labour: reducing maternal death and disability during pregnancy. Br Med Bull 67(1):191–204. doi: 10.1093/bmb/ldg018 CrossRefPubMedGoogle Scholar
  3. 3.
    Leutenegger W (1974) Functional aspects of pelvic morphology in simian primates. J Hum Evol 3(3):207–222. doi: 10.1016/0047-2484(74)90179-1 CrossRefGoogle Scholar
  4. 4.
    Rosenberg K, Trevathan W (2002) Birth, obstetrics and human evolution. BJOG: Int J Obstet Gynaecol 109(11):1199–1206. doi: 10.1046/j.1471-0528.2002.00010.x CrossRefGoogle Scholar
  5. 5.
    Krogman WM (1951) The scars of human evolution. Sci Am 184:54–57Google Scholar
  6. 6.
    Lovejoy CO, Heiple KG, Burstein AH (1973) The gait of Australopithecus. Am J Phys Anthropol 38(3):757–779. doi: 10.1002/ajpa.1330380315 CrossRefPubMedGoogle Scholar
  7. 7.
    Wittman AB, Wall LL (2007) The evolutionary origins of obstructed labor: bipedalism, encephalization, and the human obstetric dilemma. Obstet Gynecol Surv 62 (11):739–748. doi: 10.1097/01.ogx.0000286584.04310.5c, pii: 0006254-200711000-00023
  8. 8.
    Weiner S, Monge J, Mann A (2008) Bipedalism and parturition: an evolutionary imperative for cesarean delivery? Clin Perinatol 35(3):469–478. doi: 10.1016/j.clp.2008.06.003 CrossRefPubMedGoogle Scholar
  9. 9.
    Liston WA (2003) Rising caesarean section rates: can evolution and ecology explain some of the difficulties of modern childbirth? J R Soc Med 96(11):559–561CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Trevathan WR (1996) The evolution of bipedalism and assisted birth. Med Anthropol Q 10(2):287–290. doi: 10.1525/maq.1996.10.2.02a00100 CrossRefPubMedGoogle Scholar
  11. 11.
    Trevathan WR (1988) Fetal emergence patterns in evolutionary perspective. Am Anthropol 90(3):674–681. doi: 10.2307/678231 CrossRefGoogle Scholar
  12. 12.
    Wells JCK, DeSilva JM, Stock JT (2012) The obstetric dilemma: an ancient game of Russian roulette, or a variable dilemma sensitive to ecology? Am J Phys Anthropol 149(S55):40–71. doi: 10.1002/ajpa.22160 CrossRefPubMedGoogle Scholar
  13. 13.
    Shipman P (2013) Why is childbirth so painful? Am Sci 101(6):426CrossRefGoogle Scholar
  14. 14.
    Dunsworth HM, Warrener AG, Deacon T, Ellison PT, Pontzer H (2012) Metabolic hypothesis for human altriciality. Proc Natl Acad Sci 109(38):15212–15216. doi: 10.1073/pnas.1205282109 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Rak Y (1991) Lucy’s pelvic anatomy: its role in bipedal gait. J Hum Evol 20(4):283–290. doi: 10.1016/0047-2484(91)90011-J CrossRefGoogle Scholar
  16. 16.
    Wall-Scheffler CM (2012) Energetics, locomotion, and female reproduction: implications for human evolution. Ann Rev Anthropol 41(1):71–85. doi: 10.1146/annurev-anthro-092611-145739 CrossRefGoogle Scholar
  17. 17.
    Kurki HK (2011) Pelvic dimorphism in relation to body size and body size dimorphism in humans. J Hum Evol 61(6):631–643. doi: 10.1016/j.jhevol.2011.07.006 CrossRefPubMedGoogle Scholar
  18. 18.
    Kurki HK (2007) Protection of obstetric dimensions in a small-bodied human sample. Am J Phys Anthropol 133(4):1152–1165. doi: 10.1002/ajpa.20636 CrossRefPubMedGoogle Scholar
  19. 19.
    Ruff CB (1991) Climate and body shape in hominid evolution. J Hum Evol 21(2):81–105CrossRefGoogle Scholar
  20. 20.
    Weaver TD (2009) The meaning of Neandertal skeletal morphology. Proc Natl Acad Sci 106(38):16028–16033. doi: 10.1073/pnas.0903864106 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Betti L, von Cramon-Taubadel N, Manica A, Lycett SJ (2013) Global geometric morphometric analyses of the human pelvis reveal substantial neutral population history effects, even across sexes. PLoS One 8(2):e55909CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Brown EA, Ruvolo M, Sabeti PC (2013) Many ways to die, one way to arrive: how selection acts through pregnancy. Trends Genet 29(10):585–592. doi: 10.1016/j.tig.2013.03.001 CrossRefPubMedGoogle Scholar
  23. 23.
    Schultz AH (1949) Sex differences in the pelves of primates. Am J Phys Anthropol 7(3):401–424. doi: 10.1002/ajpa.1330070307 CrossRefPubMedGoogle Scholar
  24. 24.
    Crelin ES (1969) Interpubic ligament: elasticity in pregnant free-tailed bat. Science 164(3875):81–82. doi: 10.1126/science.164.3875.81 CrossRefPubMedGoogle Scholar
  25. 25.
    Epstein HT (1973) Possible metabolic constraints on human brain weight at birth. Am J Phys Anthropol 39(1):135–136. doi: 10.1002/ajpa.1330390114 CrossRefPubMedGoogle Scholar
  26. 26.
    Grabowski M (2013) Hominin obstetrics and the evolution of constraints. Evol Biol 40(1):57–75. doi: 10.1007/s11692-012-9174-7 CrossRefGoogle Scholar
  27. 27.
    Kurki HK (2013) Skeletal variability in the pelvis and limb skeleton of humans: does stabilizing selection limit female pelvic variation? Am J Human Biol 25:795. doi: 10.1002/ajhb.22455 CrossRefGoogle Scholar
  28. 28.
    Tague RG (1995) Variation in pelvic size between males and females in nonhuman anthropoids. Am J Phys Anthropol 97(3):213–233. doi: 10.1002/ajpa.1330970302 CrossRefPubMedGoogle Scholar
  29. 29.
    Tague RG (1989) Variation in pelvic size between males and females. Am J Phys Anthropol 80(1):59–71. doi: 10.1002/ajpa.1330800108 CrossRefPubMedGoogle Scholar
  30. 30.
    Khan KS, Wojdyla D, Say L, Gülmezoglu AM, Van Look PFA (2006) WHO analysis of causes of maternal death: a systematic review. The Lancet 367(9516):1066–1074. doi: 10.1016/S0140-6736(06)68397-9 CrossRefGoogle Scholar
  31. 31.
    Kjærgaard H, Dykes AK, Ottesen B, Olsen J (2010) Risk indicators for dystocia in low-risk nulliparous women: a study on lifestyle and anthropometrical factors. J Obstet Gynaecol 30(1):25–29. doi: 10.3109/01443610903276417 CrossRefPubMedGoogle Scholar
  32. 32.
    Benjamin SJ, Daniel AB, Kamath A, Ramkumar V (2012) Anthropometric measurements as predictors of cephalopelvic disproportion. Acta Obstet Gynecol Scand 91(1):122–127. doi: 10.1111/j.1600-0412.2011.01267.x CrossRefPubMedGoogle Scholar
  33. 33.
    Connolly G, McKenna P (2001) Maternal height and external pelvimetry to predict cephalo-pelvic disproportion in nulliparous African women. Br J Obstet Gynaecol 108(3):338. doi: 10.1016/S0306-5456(00)00081-4 Google Scholar
  34. 34.
    Dunger DB, Petry CJ, Ong KK (2007) Genetics of size at birth. Diabetes Care 30(Suppl 2):S150–S155. doi: 10.2337/dc07-s208 CrossRefPubMedGoogle Scholar
  35. 35.
    Wells JCK, Sharp G, Steer PJ, Leon DA (2013) Paternal and maternal influences on differences in birth weight between Europeans and Indians born in the UK. PLoS One 8(5):e61116CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Veena SR, Kumaran K, Swarnagowri MN, Jayakumar MN, Leary SD, Stein CE, Cox VA, Fall CHD (2004) Intergenerational effects on size at birth in South India. Paediatr Perinat Epidemiol 18(5):361–370. doi: 10.1111/j.1365-3016.2004.00579.x CrossRefPubMedGoogle Scholar
  37. 37.
    Catalano PM, McIntyre HD, Cruickshank JK, McCance DR, Dyer AR, Metzger BE, Lowe LP, Trimble ER, Coustan DR, Hadden DR, Persson B, Hod M, Oats JJN, for the HAPO Study Cooperative Research Group (2012) The hyperglycemia and adverse pregnancy outcome study: associations of GDM and obesity with pregnancy outcomes. Diabetes Care 35(4):780–786Google Scholar
  38. 38.
    Kramer MS (1987) Determinants of low birth weight: methodological assessment and meta-analysis. Bull World Health Organ 65(5):663–737PubMedPubMedCentralGoogle Scholar
  39. 39.
    Victora CG, Adair L, Fall C, Hallal PC, Martorell R, Richter L, Sachdev HS (2008) Maternal and child undernutrition: consequences for adult health and human capital. Lancet 371(9609):340–357CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Barker D (ed) (1993) Fetal and infant origins of adult disease. British Medical Journal, LondonGoogle Scholar
  41. 41.
    Barbiro-Michaely E, Tolmasov M, Rinkevich-Shop S, Sonn J, Mayevsky A (2007) Can the “brain-sparing effect” be detected in a small-animal model? Med Sci Monit 13(10):BR211-219. Pii:502335Google Scholar
  42. 42.
    Roy RP (2003) A Darwinian view of obstructed labor. Obstet Gynecol 101(2):397–401. doi: 10.1016/S0029-7844(02)02367-0 PubMedGoogle Scholar
  43. 43.
    Mummert A, Esche E, Robinson J, Armelagos GJ (2011) Stature and robusticity during the agricultural transition: evidence from the bioarchaeological record. Econ Human Biol 9(3):284–301. doi: 10.1016/j.ehb.2011.03.004 CrossRefGoogle Scholar
  44. 44.
    Cohen MN, Armelagos GJ (eds) (1984) Paleopathology at the origins of agriculture. Academic Press, LondonGoogle Scholar
  45. 45.
    Arriaza B, Allison M, Gerszten E (1988) Maternal mortality in pre-Columbian Indians of Arica, Chile. Am J Phys Anthropol 77(1):35–41. doi: 10.1002/ajpa.1330770107 CrossRefPubMedGoogle Scholar
  46. 46.
    Kurki HK (2011) Compromised skeletal growth? Small body size and clinical contraction thresholds for the female pelvic canal. Int J Paleopathol 1(3–4):138–149. doi: 10.1016/j.ijpp.2011.10.004 CrossRefGoogle Scholar
  47. 47.
    Yu Z, Han S, Zhu J, Sun X, Ji C, Guo X (2013) Pre-pregnancy body mass index in relation to infant birth weight and offspring overweight/obesity: a systematic review and meta-analysis. PLoS One 8(4):e61627CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Tsvieli O, Sergienko R, Sheiner E (2012) Risk factors and perinatal outcome of pregnancies complicated with cephalopelvic disproportion: a population-based study. Arch Gynecol Obstet 285(4):931–936. doi: 10.1007/s00404-011-2086-4 CrossRefPubMedGoogle Scholar
  49. 49.
    Haerskjold A, Hegaard HK, Kjaergaard H (2012) Emergency caesarean section in low risk nulliparous women. J Obstet Gynaecol 32(6):543–547. doi: 10.3109/01443615.2012.689027 CrossRefPubMedGoogle Scholar
  50. 50.
    Wu C-H, Chen C-F, Chien C-C (2013) Prediction of dystocia-related cesarean section risk in uncomplicated Taiwanese nulliparas at term. Arch Gynecol Obstet 288(5):1027–1033. doi: 10.1007/s00404-013-2864-2 CrossRefPubMedGoogle Scholar
  51. 51.
    Himes JH (1979) Secular changes in body proportions and composition. Monogr Soc Res Child Dev 44(3/4):28–58CrossRefGoogle Scholar
  52. 52.
    Bowles GT (1932) New types of old Americans at Harvard. Harvard University Press, CambridgeGoogle Scholar
  53. 53.
    Ruff CB (1994) Morphological adaptation to climate in modern and fossil hominids. Am J Phys Anthropol 37(S19):65–107CrossRefGoogle Scholar
  54. 54.
    Walsh JA (2008) Evolution and the cesarean section rate. Am Biol Teach 70(7):401–404. doi: 10.1662/0002-7685(2008)70[401:etcsr]2.0.co;2 CrossRefGoogle Scholar
  55. 55.
    WHO (2005) Pocket book of hospital care for children: guidelines for the management of common illnesses with limited resources. World Health Organization, GenevaGoogle Scholar
  56. 56.
    Hales CN, Barker DJ (1992) Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 35(7):595–601CrossRefPubMedGoogle Scholar
  57. 57.
    Wells JCK (2009) Thrift: a guide to thrifty genes, thrifty phenotypes and thrifty norms. Int J Obes 33(12):1331–1338CrossRefGoogle Scholar
  58. 58.
    Souza J, Gulmezoglu A, Lumbiganon P, Laopaiboon M, Carroli G, Fawole B, Ruyan P, Maternal tWGSo, Group PHR (2010) Caesarean section without medical indications is associated with an increased risk of adverse short-term maternal outcomes: the 2004–2008 WHO Global Survey on Maternal and Perinatal Health. BMC Medicine 8(1):71Google Scholar
  59. 59.
    Villar J, Valladares E, Wojdyla D, Zavaleta N, Carroli G, Velazco A, Shah A, Campodónico L, Bataglia V, Faundes A, Langer A, Narváez A, Donner A, Romero M, Reynoso S, Simônia de Pádua K, Giordano D, Kublickas M, Acosta A (2006) Caesarean delivery rates and pregnancy outcomes: the 2005 WHO global survey on maternal and perinatal health in Latin America. Lancet 367(9525):1819–1829. doi: 10.1016/S0140-6736(06)68704-7 CrossRefPubMedGoogle Scholar
  60. 60.
    Bodner K, Wierrani F, Grünberger W, Bodner-Adler B (2011) Influence of the mode of delivery on maternal and neonatal outcomes: a comparison between elective cesarean section and planned vaginal delivery in a low-risk obstetric population. Arch Gynecol Obstet 283(6):1193–1198. doi: 10.1007/s00404-010-1525-y CrossRefPubMedGoogle Scholar
  61. 61.
    Li H, Liu J, Blustein J (2013) Cesarean delivery on maternal request. Jama 310(9):977–978CrossRefPubMedGoogle Scholar
  62. 62.
    B-s Wang, L-f Zhou, Coulter D, Liang H, Zhong Y, Y-n Guo, L-p Zhu, X-l Gao, Yuan W, E-s Gao (2010) Effects of caesarean section on maternal health in low risk nulliparous women: a prospective matched cohort study in Shanghai, China. BMC Pregnancy Childbirth 10(1):78CrossRefGoogle Scholar
  63. 63.
    Lavender T, Hofmeyr GJ, Neilson James P, Kingdon C, Gyte Gillian ML (2012) Caesarean section for non-medical reasons at term. Cochrane Database Syst Rev (3). doi: 10.1002/14651858.CD004660.pub3
  64. 64.
    Konje JC, Ladipo OA (2000) Nutrition and obstructed labor. Am J Clin Nutr 72(1):291S–297SPubMedGoogle Scholar
  65. 65.
    Siega-Riz AM, Gray GL (2013) Gestational weight gain recommendations in the context of the obesity epidemic. Nutr Rev 71:S26–S30. doi: 10.1111/nure.12074 CrossRefPubMedGoogle Scholar
  66. 66.
    National Research Council (2009) Weight gain during pregnancy: reexamining the guidelines. The National Academies PressGoogle Scholar
  67. 67.
    Jungheim ES, Moley KH (2010) Current knowledge of obesity’s effects in the pre- and periconceptional periods and avenues for future research. Am J Obstet Gynecol 203(6):525–530. doi: 10.1016/j.ajog.2010.06.043 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Rasmussen KM, Abrams B, Bodnar LM, Butte NF, Catalano PM, Maria Siega-Riz A (2010) Recommendations for weight gain during pregnancy in the context of the obesity epidemic. Obstet Gynecol 116(5):1191–1195CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Artal R, Lockwood CJ, Brown HL (2010) Weight gain recommendations in pregnancy and the obesity epidemic. Obstet Gynecol 115(1):152–155CrossRefPubMedGoogle Scholar
  70. 70.
    Ojha S, Saroha V, Symonds ME, Budge H (2013) Excess nutrient supply in early life and its later metabolic consequences. Clin Exp Pharmacol Physiol 40(11):817–823. doi: 10.1111/1440-1681.12061 CrossRefPubMedGoogle Scholar
  71. 71.
    Kopp UMS, Dahl-Jorgensen K, Stigum H, Frost Andersen L, Nass O, Nystad W (2012) The associations between maternal pre-pregnancy body mass index or gestational weight change during pregnancy and body mass index of the child at 3 years of age. Int J Obes 36(10):1325–1331CrossRefGoogle Scholar
  72. 72.
    Cole TJ (2003) The secular trend in human physical growth: a biological view. Econ Hum Biol 1(2):161–168CrossRefPubMedGoogle Scholar
  73. 73.
    Cnattingius S, Villamor E, Lagerros YT, Wikstrom AK, Granath F (2012) High birth weight and obesity—a vicious circle across generations. Int J Obes 36(10):1320–1324CrossRefGoogle Scholar
  74. 74.
    Kim C (2010) Gestational diabetes: risks, management, and treatment options. Int J Womens Health 2:339–351CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Thangaratinam S, Rogozińska E, Jolly K, Glinkowski S, Roseboom T, Tomlinson JW, Kunz R, Mol BW, Coomarasamy A, Khan KS (2012) Effects of interventions in pregnancy on maternal weight and obstetric outcomes: meta-analysis of randomised evidence. BMJ 344. doi: 10.1136/bmj.e2088
  76. 76.
    Russell JGB (1969) Moulding of the pelvic outlet. BJOG: Int J Obstet Gynaecol 76(9):817–820. doi: 10.1111/j.1471-0528.1969.tb06185.x CrossRefGoogle Scholar
  77. 77.
    Dunn P (1976) Obstetric delivery today: for better or for worse? Lancet 307(7963):790–793. doi: 10.1016/S0140-6736(76)91624-X CrossRefGoogle Scholar
  78. 78.
    Walrath D (2003) Rethinking pelvic typologies and the human birth mechanism. Curr Anthropol 44(1):5–31. doi: 10.1086/344489 CrossRefGoogle Scholar
  79. 79.
    Dundes L (1987) The evolution of maternal birthing position. Am J Public Health 77(5):636–641. doi: 10.2105/ajph.77.5.636 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Michel SCA, Rake A, Treiber K, Seifert B, Chaoui R, Huch R, Marincek B, Kubik-Huch RA (2002) MR obstetric pelvimetry: effect of birthing position on pelvic bony dimensions. Am J Roentgenol 179(4):1063–1067. doi: 10.2214/ajr.179.4.1791063 CrossRefGoogle Scholar
  81. 81.
    Russell JGB (1982) The rationale of primitive delivery positions. BJOG: Int J Obstet Gynaecol 89(9):712–715. doi: 10.1111/j.1471-0528.1982.tb05096.x CrossRefGoogle Scholar
  82. 82.
    Thies-Lagergren L, Kvist LJ, Sandin-Bojö A-K, Christensson K, Hildingsson I (2013) Labour augmentation and fetal outcomes in relation to birth positions: a secondary analysis of an RCT evaluating birth seat births. Midwifery 29(4):344–350. doi: 10.1016/j.midw.2011.12.014 CrossRefPubMedGoogle Scholar
  83. 83.
    Gardosi J, Sylvester S, B-Lynch C (1989) Alternative positions in the second stage of labour: a randomized controlled trial. BJOG: Int J Obstet Gynaecol 96 (11):1290–1296. doi: 10.1111/j.1471-0528.1989.tb03226.x
  84. 84.
    de Jong PR, Johanson RB, Baxen P, Adrians VD, van der Westhuisen S, Jones PW (1997) Randomised trial comparing the upright and supine positions for the second stage of labour. BJOG: Int J Obstet Gynaecol 104 (5):567–571. doi: 10.1111/j.1471-0528.1997.tb11534.x
  85. 85.
    Gupta JK, Hofmeyr GJ, Shehmar M (2012) Position in the second stage of labour for women without epidural anaesthesia. Cochrane Database Syst Rev (5). doi: 10.1002/14651858.CD002006.pub3
  86. 86.
    Bodner-Adler B, Bodner K, Kimberger O, Lozanov P, Husslein P, Mayerhofer K (2003) Women’s position during labour: influence on maternal and neonatal outcome. Wien Klin Wochenschr 115(19–20):720–723. doi: 10.1007/bf03040889 CrossRefPubMedGoogle Scholar
  87. 87.
    Melo B (2010) Intrapartum interventions for preventing shoulder dystocia. The WHO reproductive health library. World Health Organisation, GenevaGoogle Scholar
  88. 88.
    Mansor A, Arumugam K, Omar SZ (2010) Macrosomia is the only reliable predictor of shoulder dystocia in babies weighing 3.5 kg or more. Euro J Obstet Gynecol Reprod Biol 149(1):44–46. doi: 10.1016/j.ejogrb.2009.12.003 CrossRefGoogle Scholar
  89. 89.
    National Collaborating Centre for Women’s and Children’s Health (2011) Caesarean section, 2nd edition edn. Royal College of Obstetricians and Gynaecologists, LondonGoogle Scholar
  90. 90.
    Mazouni C, Porcu G, Cohen-Solal E, Heckenroth H, Guidicelli B, Bonnier P, Gamerre M (2006) Maternal and anthropomorphic risk factors for shoulder dystocia. Acta Obstet Gynecol Scand 85(5):567–570. doi: 10.1080/00016340600605044 CrossRefPubMedGoogle Scholar
  91. 91.
    Mujugira A, Osoti A, Deya R, Hawes S, Phipps A (2013) Fetal head circumference, operative delivery, and fetal outcomes: a multi-ethnic population-based cohort study. BMC Pregnancy Childbirth 13(1):106CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Larson A, Mandelbaum D (2013) Association of head circumference and shoulder dystocia in macrosomic neonates. Matern Child Health J 17(3):501–504. doi: 10.1007/s10995-012-1013-z CrossRefPubMedGoogle Scholar
  93. 93.
    Connolly G, Naidoo C, Conroy RM, Byrne P, Mckenna P (2003) A new predictor of cephalopelvic disproportion? J Obstet Gynaecol 23(1):27–29. doi: 10.1080/0144361021000043173 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Emma Pomeroy
    • 1
    • 2
  • Jonathan C. K. Wells
    • 3
  • Jay T. Stock
    • 2
  1. 1.Newnham College, University of CambridgeCambridgeUK
  2. 2.Department of Archaeology and AnthropologyUniversity of CambridgeCambridgeUK
  3. 3.Childhood Nutrition Research CentreUCL Institute of Child HealthLondonUK

Personalised recommendations