Advertisement

Stochastic Anti-Resonance in Polarization Phenomena

  • Vladimir L. KalashnikovEmail author
  • Sergey V. Sergeyev
Chapter
Part of the Understanding Complex Systems book series (UCS)

Abstract

The phenomenon of resonant stochastization, so-called stochastic anti-resonance, is considered on an example of Raman fibre amplifier with randomly varying birefringence. Despite a well-known effect of noise suppression and global regularization of dynamics due to resonant interaction of noise and regular external periodic perturbation, as it takes a place in the case of stochastic resonance, here we report about reverse situation when regular perturbation assists a noise-induced escape of a system from metastable state. Such an escape reveals itself by different signatures like growth of dispersion, dropping of Hurst parameter and Kramers length characterizing behavior of physically relevant parameters (e.g. average gain and projection of signal state of polarization to pump one). This phenomenon is analyzed by the means of two techniques: direct numerical simulations of underlying stochastic differential equations and multi-scale averaging method reducing a problem to a set of deterministic ordinary differential equations for average values characterizing the states of polarization. It is shown, that taking into account a relevant set of scales characterizing a system results in excellent agreement between results of direct numerical simulations and average model. It is very challenging outcome because allows replacing the cumbersome numerical simulations and revealing the system-relevant signatures for many important real-world systems.

Keywords

Direct Numerical Simulation Stochastic Resonance Stimulate Raman Scattering Hurst Parameter Polarization Mode Dispersion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Support of the FP7-PEOPLE-2012-IAPP (project GRIFFON, No. 324391) is acknowledged. The computational results have been achieved using the Vienna Scientific Cluster (VSC).

References

  1. 1.
    A. Beckermann (ed.), Emergence or Reduction? Esseys on the Prospects of Nonreductive Physicalism (de Gruyter, Berlin, 1992), p. 28Google Scholar
  2. 2.
    R. Lewin, Complexity. Life at the Edge of Chaos (Macmillan Publishing Company, New York, 1992)Google Scholar
  3. 3.
    H. Poincaré, Les méthodes nouvelles de la mécanique céleste, tome I (Gauthier-Villars, Paris, 1892)zbMATHGoogle Scholar
  4. 4.
    A. Nayfeh, Perturbation Methods (Wiley, New York, 1973)zbMATHGoogle Scholar
  5. 5.
    J. Gao, Y. Cao, W. Tung, J. Hu, Multiscale Analysis of Complex Time Series: Integration of Chaos and Random Fractal Theory, and Beyond (Wiley-Blackwell, New Jersey, 2007)CrossRefzbMATHGoogle Scholar
  6. 6.
    E. Weinan, Principles of Multiscale Modeling (Cambridge University Press, Cambridge, 2011)zbMATHGoogle Scholar
  7. 7.
    A. Galtarossa, C.R. Menyuk, Polarization Mode Dispersion (Springer, New-York, 2005)CrossRefGoogle Scholar
  8. 8.
    C. Headley, G.P. Agrawal (eds.), Raman Amplification in Fiber Optical Communication Systems (Elsevier, Amsterdam, 2005)Google Scholar
  9. 9.
    S.V. Manakov, On the theory of two-dimensional stationary self-focusing of electromagnetic waves. Sov. Phys. J. Exp. Theor. Phys. 38, 248–253 (1974)ADSGoogle Scholar
  10. 10.
    P.K.A. Wai, C.R. Menyuk, Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence. J. Lightwave Technol. 14, 148–157 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    V.V. Kozlov, J. Nuño, J.D. Ania-Castañón, S. Wabnitz, Trapping polarization of light in nonlinear optical fibers: an ideal Raman polarizer, in Spontaneous Symmetry Breaking, Self-Trapping, and Josephson Oscillations, ed. by B.A. Malomed. Progress in Optical Science and Photonics, vol. 1 (Springer, Berlin, 2013), pp. 227–246Google Scholar
  12. 12.
    V. Kalashnikov, S.V. Sergeyev, G. Jacobsen, S. Popov, S.K. Turitsyn, Multi-scale polarisation phenomena. Light Sci Appl 5, e16011 (2016)CrossRefGoogle Scholar
  13. 13.
    Q. Lin, G.P. Agrawal, Vector theory of stimulated Raman scattering and its application to fiber-based Raman amplifiers. J. Opt. Soc. Am. B 20, 1616–1631 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    S. Sergeyev, S. Popov, A.T. Friberg, Modeling polarization-dependent gain in fiber Raman amplifiers with randomly varying birefringence. Opt. Commun. 262, 114–119 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    S. Sergeyev, Activated polarization pulling and de-correlation of signal and pump states of polarization in fiber raman amplifier. Opt. Express 19, 24268–24279 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    P. Hanggi, Escape from a metastable state. J. Stat. Phys. 42, 105–148 (1986)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    B. Lindner, J. Garsia-Ojalvo, A. Neiman, L. Schimansky-Greif, Effects of noise in excitable systems. Phys. Rep. 392, 321–424 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Stochastic resonance. Rev. Mod. Phys. 70, 223–287 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    Th. Wellens, V. Shatochin, A. Buchleitner, Stochastic resonance. Rep. Prog. Phys. 67, 45–105 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    M.I. Dykman, B. Golding, L.I. McCann, V.N. Smelyanskiy, D.G. Luchinsky, R. Mannella, P.V.E. McClintock, Activated escape of periodically driven systems. Chaos 11, 587–594 (2001)ADSCrossRefzbMATHGoogle Scholar
  21. 21.
    R.H. Stolen, Polarization effects in fiber Raman and Brillouin Lasers. IEEE J. Quantum Electron. QE-15, 1157–1160 (1979)ADSCrossRefGoogle Scholar
  22. 22.
    L. Arnold, Stochastic Differential Equations: Theory and Applications (Wiley, New York, 1974)zbMATHGoogle Scholar
  23. 23.
    B. Øksendal, Stochastic Differential Equations (Springer, Berlin, 2007)zbMATHGoogle Scholar
  24. 24.
    G.A. Pavliotis, Stochastic Processes and Applications: Diffusion Process, the Fokker-Planck and Langevin Equations (Springer, New York, 2014)CrossRefzbMATHGoogle Scholar
  25. 25.
    S. Sergeyev, S. Popov, A.T. Friberg, Virtually isotropic transmission media with fiber raman amplifier. IEEE J. Quantum Electron. QE-46, 1492–1497 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    V.V. Kozlov, J. Nuño, J.D. Ania-Castañón, S. Wabnitz, Theory of fiber optic Raman polarizers. Opt. Lett. 35, 3970–3972 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    V.V. Kozlov, J. Nuño, J.D. Ania-Castañón, S. Wabnitz, Multichannel Raman polarizer with suppressed relative intensity noise for wavelength division multiplexing transmission lines. Opt. Lett. 37, 2073–2075 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    V.V. Kozlov, J. Nuño, J.D. Ania-Castañón, S. Wabnitz, Trapping polarization of light in nonlinear optical fibers: an ideal Raman polarizer, in Progress in Optical Science and Photonics. Spontaneous Symmetry Breaking, Self-Trapping, and Josephson Oscillations, ed. by B.A. Malomed (Springer, Berlin, 2012), pp. 227–246Google Scholar
  29. 29.
    V.V. Kozlov, J. Nuño, J.D. Ania-Castañón, S. Wabnitz, Theoretical study of optical fiber Raman polarizers with counterpropagating beams. J. Lightwave Technol. 29, 341–347 (2011)CrossRefGoogle Scholar
  30. 30.
    V.V. Kozlov, J. Nuño, J.D. Ania-Castañón, S. Wabnitz, Analytic theory of fiber-optic Raman polarizers. Opt. Express 20,27242–27247 (2012)CrossRefGoogle Scholar
  31. 31.
    S. Sergeyev, S. Popov, Two-section fiber optic Raman polarizer. IEEE J. Quantum Electron. QE-48, 56–60 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    S. Sergeyev, S. Popov, A.T. Friberg, Spun fiber Raman amplifiers with reduced polarization impairments. Opt. Express 16, 14380–14389 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    S. Sergeyev, Fiber Raman amplification in a two-scale spun fiber. Opt. Mater. Express 2, 1683–1689 (2012)MathSciNetCrossRefGoogle Scholar
  34. 34.
    L. Ursini, M. Santagiustina, L. Palmieri, Raman nonlinear polarization pulling in the pump depleted regime in randomly birefringent fibers. IEEE Photon. Technol. Lett. 23, 254–256 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    F. Chiarello, L. Ursini, L. Palmieri, M. Santagiustina, Polarization attraction in counterpropagating fiber Raman amplifiers. IEEE Photon. Technol. Lett. 23, 1457–1459 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    M. Martinelli, M. Cirigliano, M. Ferrario, L. Marazzi, P. Martelli, Evidence of Raman-induced polarization pulling. Opt. Express 17, 947–955 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    S. Popov, S. Sergeyev, A.T. Friberg, Impact of pump polarization on the polarization dependence of Raman gain due to the break of fiber circular symmetry. J. Opt. A Pure Appl. Opt. 6, S72–S76 (2004)ADSCrossRefGoogle Scholar
  38. 38.
    N.J. Muga, M.F.S. Ferreira, A.N. Pinto, Broadband polarization pulling using Raman amplification. Opt. Express 19, 18707–18712 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    P. Morin, S. Pitois, J. Fatome, Simultaneous polarization attraction and Raman amplification of a light beam in optical fibers. J. Opt. Soc. Am. B 29, 2046–2052 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    F. Chiarello, L. Palmieri, M. Santagiustina, R. Gamatham, A. Galtarossa, Experimental characterization of the counter-propagating Raman polarization attraction. Opt. Express 20, 26050–26055 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    M.D. McDonnell, D. Abbott, What is stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology. PLoS Comput. Biol. 5, e1000348 (2009)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    D. Faccio, F. Belgiorno, S. Cacciatori, V. Gorini, S. Liberati, U. Moschella (eds.), Analogue Gravity Phenomenology. Analogue Spacetimes and Horizons, from Theory to Experiment (Springer, Cham, 2013)zbMATHGoogle Scholar
  43. 43.
    M. Naruse (ed.), Nanophotonic Information Physics (Springer, Berlin, 2014)Google Scholar
  44. 44.
    F. Moss, L.M. Ward, W.G. Sannita, Stochastic resonance and sensory information processing: a tutorial and review of application. Clin. Neurophysiol. 115, 267–281 (2004)CrossRefGoogle Scholar
  45. 45.
    P. Hänggi, Stochastic resonance in biology. ChemPhysChem 3, 285–290 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Aston Institute of Photonic TechnologiesAston UniversityBirminghamUK

Personalised recommendations