Skip to main content

Prefrontal Cortical Microcircuits Support the Emergence of Mind

  • Chapter
  • First Online:
The Physics of the Mind and Brain Disorders

Part of the book series: Springer Series in Cognitive and Neural Systems ((SSCNS,volume 11))

Abstract

This chapter dwells on the high-order neural processing that underlies the emergence of the mind. We discuss the operation of microcircuits, such as neurons in different laminae of cortical columns, modular networks composed of microcircuits, and the hubs of the brain’s connectome. We show how the integration of information by distributed networks of neurons generates engrams, cognitive functions, and complex mental sequences, such as the perception-to-action cycle. The mind is considered to be the product of the integration of perceptual prefrontal cortical signals processed in supra-granular cortical layers, action-related information represented in infra-granular layers, and reward signals originating in the midbrain. The cortical modules and their microcircuits are described as building blocks of this complex neural circuitry that performs hierarchical processing. We emphasize the importance of bidirectional information flow in cortico-cortical and thalamo-cortical loops, which integrate bottom-up and top-down communications between the brain areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Alderson-Day B, Weis S, McCarthy-Jones S, Moseley P, Smailes D, Fernyhough C (2016) The brain’s conversation with itself: neural substrates of dialogic inner speech. Soc Cogn Affect Neurosci 11:110–120. doi:10.1093/scan/nsv094

    Article  Google Scholar 

  • Alexander GE, DeLong ME, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Ann Rev Neurosci 9:357–381

    CAS  Google Scholar 

  • Allman J, Hakeem A, Nimchinsky E, Hof P (2006) The anterior cingulate cortex. Ann N Y Acad Sci 935:107–117

    Google Scholar 

  • Andersen P (1990) Synaptic integration in hippocampal CA1 pyramids. Prog Brain Res 83:215–222

    CAS  Google Scholar 

  • Arnsten AF (2013) The neurobiology of thought: the groundbreaking discoveries of Patricia Goldman-Rakic1937–2003. Cereb Cortex 23(10):2269–2281. doi:10.1093/cercor/bht195

    Article  Google Scholar 

  • Banich MT (1998) The missing link: the role of interhemispheric interaction in attentional processing. Brain Cogn 36(2):128–157

    CAS  Google Scholar 

  • Bauer RH, Fuster JM (1976) Delayed-matching and delayed-response deficit from cooling dorsolateral prefrontal cortex in monkeys. Q J Exp Psychol B 90:293–302

    CAS  Google Scholar 

  • Ben-Yakov A, Dudai Y (2011) Constructing realistic engrams: poststimulus activity of hippocampus and dorsal striatum predicts subsequent episodic memory. J Neurosci 31(24):9032–9042

    CAS  Google Scholar 

  • Beul SF, Grant S, Hilgetag CC (2015) A predictive model of the cat cortical connectome based on cytoarchitecture and distance. Brain Struct Funct 220:3167–3184. doi:10.1007/s00429-014-0849-y

    Article  Google Scholar 

  • Bongard S, Nieder A (2014) Basic mathematical rules are encoded by primate prefrontal cortex neurons. Proc Natl Acad Sci U S A 107(5):2277–2282

    Google Scholar 

  • Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13(5):336–349. https://doi.org/10.1038/nrn3214

    Article  CAS  Google Scholar 

  • Burgess PW, Dumontheil I, Gilbert SJ (2007) The gateway hypothesis of rostral prefrontal cortex (area 10) function. Trends Cogn Sci 11(7):290–298

    Google Scholar 

  • Buxhoeveden DP, Casanova MF (2002) The minicolumn hypothesis in neuroscience. Brain 125:935–951

    Google Scholar 

  • Casanova MF, El-Baz A, Switala A (2011) Laws of conservation as related to brain growth, aging, and evolution: symmetry of the minicolumn. Front Neuroanat 5:66. https://doi.org/10.3389/fnana.2011.00066

    Google Scholar 

  • Chafee MV, Goldman-Rakic PS (1998) Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. J Neurophysiology 79:2919–2940

    CAS  Google Scholar 

  • Chapman SB, Aslan S, Spence JS, Hart JJ Jr, Bartz EK, Didehbani N, Keebler MW, Gardner CM, Strain JF, DeFina LF, Lu H (2015) Neural mechanisms of brain plasticity with complex cognitive training in healthy seniors. Cereb Cortex 25(2):396–405. https://doi.org/10.1093/cercor/bht234

    Article  Google Scholar 

  • Chunga AW, Schirmerb MD, Krishnanc ML, Ballc G, Aljabarc P, Edwardsc AD, Montana G (2016) Characterising brain network topologies: a dynamic analysis approach using heat kernels. NeuroImage 141:490–501

    Google Scholar 

  • Clune J, Mouret JB, Lipson H (2013) The evolutionary origins of modularity. Proc Biol Sci. 30 Jan 2013; 280(1755):20122863. https://doi.org/10.1098/rspb.2012.2863

    Article  Google Scholar 

  • Collette F, Van der Linden M, Laureys S, Delfiore G, Degueldre C, Luxen A, Salmon E (2005) Exploring the unity and diversity of the neural substrates of executive functioning. Hum Brain Mapp 25(4):409–423

    Google Scholar 

  • Constantinople CM, Bruno RM (2013) Effects and mechanisms of wakefulness on local cortical networks. Neuron. 24 Mar 2011; 69(6):1061–1068. https://doi.org/10.1016/j.neuron. 2011.02.040

    Article  CAS  Google Scholar 

  • Crowe DA, Goodwin SJ, Blackman RK, Sakellaridi S, Sponheim SR, MacDonald AW III, Chafee MV (2013) Prefrontal neurons transmit signals to parietal neurons that reflect executive control of cognition. Nat Neurosci 16(10):1484–1491

    CAS  Google Scholar 

  • Curtis CE, D’Esposito M (2003) Persistent activity in the prefrontal cortex during working memory. Trends Cogn Sci 7:415–423

    Google Scholar 

  • Curtis CE, Rao VY, D’Esposito M (2004) Maintenance of spatial and motor codes during oculomotor delayed response tasks. J Neurosci 24:3944–3952

    CAS  Google Scholar 

  • Cutsuridis V (2011) GABA inhibition modulates NMDA-R mediated spike timing dependent plasticity (STDP) in a biophysical model. Neural Netw. Jan 2011; 24(1):29–42. https://doi.org/10.1016/j.neunet.2010.08.005

    Article  Google Scholar 

  • D’Esposito M (2007) From cognitive to neural models of working memory. Philos Trans R Soc B 362:761–772

    Google Scholar 

  • DeFelipe J (2010) From the connectome to the synaptome: an epic love story. Science 330(6008):1198–1201. https://doi.org/10.1126/science.1193378

    Article  CAS  Google Scholar 

  • DeFelipe J (2011) The evolution of the brain, the human nature of cortical circuits, and intellectual creativity. Front Neuroanat 5(29):1–17. doi:10.3389/fnana.2011.00029

    Article  Google Scholar 

  • Eiselt AK, Nieder A (2013) Representation of abstract quantitative rules applied to spatial and numerical magnitudes in primate prefrontal cortex. J Neurosci 33(17):7526–7534

    CAS  Google Scholar 

  • Friedman NP, Miyake A (2016) Unity and diversity of executive functions: Individual differences as a window on cognitive structure. Cortex. Jan 2017; 86:186–204. https://doi.org/10.1016/j.cortex.2016.04.023

    Article  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 61:331–349

    CAS  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1993) Dorsolateral prefrontal lesions and oculomotor delayed response performance: evidence for mnemonic “scotomas”. J Neurosci 13:1479–1497

    CAS  Google Scholar 

  • Fuster JM (2000) Executive frontal functions. Exp Brain Res 133:66–70

    CAS  Google Scholar 

  • Fuster JM (2001) The prefrontal cortex-an update: time is of the essence. Neuron 30:319–333

    CAS  Google Scholar 

  • Fuster JM, Alexander GE (1971) Neuron activity related to short-term memory. Science 173: 652–654

    CAS  Google Scholar 

  • Fuster JM, Bodnar M, Kroger JK (2000) Cross-modal and cross-temporal association in neurons of frontal cortex. Nature 405:347–351

    CAS  Google Scholar 

  • Gilbert J, Spengler S, Simons JS, Steele JD, Lawrie SM, Frith CD, Burgess PW (2006) Functional specialization within rostral prefrontal cortex (area 10): a meta-analysis. J Cogn Neurosci 18(6):932–948

    Google Scholar 

  • Goldman-Rakic PS, Selemon LD, Schwartz ML (1984) Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey. Neurosci 12(3):719–743

    CAS  Google Scholar 

  • Goldman-Rakic PS (1995) Architecture of the prefrontal cortex and the central executive. Ann N Y Acad Sci 769:71–83

    CAS  Google Scholar 

  • Goldman-Rakic PS (1996) The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive. Philos Trans R Soc Lond Ser B Biol Sci 351(1346):1445–1453

    CAS  Google Scholar 

  • Grillner S, Markram H, De Schutter E, Silberberg G, LeBeau F (2005) Microcircuits in action – from CPGs to neocortex. Trends Neurosci 28(10):525–533

    CAS  Google Scholar 

  • He M, Tucciarone J, Lee SH, Nigro MJ, Kim K, Levine JM, Kelly SM, Krugikov I, Wu P, Chen Y, Gong L, Hou Y, Osten P, Rudy B, Huang ZJ (2016) Strategies and tools for combinatorial targeting of GABAergic neurons in mouse cerebral cortex. Neuron 91:1228–1243. 2016. doi: http://dx.doi.org/10.1016/j.neuron.2016.08.021

    CAS  Google Scholar 

  • Herculano-Houzel S (2009) The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci 3:31. https://doi.org/10.3389/neuro.09.031.2009

    Article  Google Scholar 

  • Jang SH, Kwon HG (2015) The direct pathway from the brainstem reticular formation to the cerebral cortex in the ascending reticular activating system: a diffusion tensor imaging study. Neurosci Lett 606:200–203

    CAS  Google Scholar 

  • Jeon HA, Anwander A, Friederici AD (2014) Functional network mirrored in the prefrontal cortex, caudate nucleus, and thalamus: high-resolution functional imaging and structural connectivity. J Neurosci 34(28):9202–9212. https://doi.org/10.1523/JNEUROSCI.0228-14.2014

    Article  CAS  Google Scholar 

  • Jodoj E, Chiang C, Aston-Jones G (1998) Potent excitatory influence of prefrontal cortex activity on noradrenergic locus coeruleus neurons. Neuroscience 83(1):63–79

    Google Scholar 

  • Knowlton BJ, Morrison RG, Hummel JE, Holyoak KJ (2012) A neurocomputational system for relational reasoning. Trends Cogn Sci 16(7):373–381. doi:10.1016/j.tics.2012.06.002

    Article  Google Scholar 

  • Kritzer MF, Goldman-Rakic PS (1995) Intrinsic circuit organization of the major layers and sublayers of the dorsolateral prefrontal cortex in the rhesus monkey. J Comp Neurol 359:131–143. https://doi.org/10.1002/cne.903590109

    Article  CAS  Google Scholar 

  • Koechlin E, Hyafil A (2007) Anterior prefrontal function and the limits of human-decision making. Science 318:594–598

    CAS  Google Scholar 

  • Lebedev MA, Wise SP (2002) Insights into seeing and grasping: distinguishing the neural correlates of perception and action. Behav Cogn Neurosci Rev 1(2):108–129

    Google Scholar 

  • Lebedev MA, Messinger A, Kralik JD, Wise SP (2004) Representation of attended versus remembered locations in prefrontal cortex. PLoS Biol 2(11):e365. doi:10.1371/journal.pbio.0020365

    Article  CAS  Google Scholar 

  • Li M, Liu J, Tsien JZ (2016) Theory of Connectivity: Nature and Nurture of Cell Assemblies and Cognitive Computation. Front Neural Circuits 10:34. https://doi.org/10.3389/fncir.2016.00034

    Article  Google Scholar 

  • Limb CJ, Braun AR (2008) Neural substrates of spontaneous musical performance: an fMRI study of jazz improvisation. PLoS One 3(2):e1679. doi:10.1371/journal.pone.0001679

    Article  CAS  Google Scholar 

  • Mansouri FA, Buckley MJ, Mahboubi M, Tanaka K (2015) Behavioral consequences of selective damage to frontal pole and posterior cingulate cortices. Proc Natl Acad Sci USA 112(29):E3940–E3949. doi:10.1073/pnas.1422629112

    Article  CAS  Google Scholar 

  • Marklund P, Fransson P, Cabeza R, Larsson A, Ingvar M, Nyberg L (2007) Unity and diversity of tonic and phasic executive control components in episodic and working memory. Neuroimage 36(4):1361–1373

    CAS  Google Scholar 

  • Mayse JD, Nelson GM, Avila I, Gallagher M, Lin S-C (2015) Basal forebrain neuronal inhibition enables rapid behavioral stopping. Nat Neurosci 18:1501–1508

    CAS  Google Scholar 

  • McFarland NR, Haber SN (2002) Thalamic relay nuclei of the basal ganglia form both reciprocal and nonreciprocal cortical connections, linking multiple frontal cortical areas. J Neurosci 22:8117–8132

    CAS  Google Scholar 

  • Mountcastle VB (1997) The columnar organization of the neocortex. Brain 120(4):701–722

    Google Scholar 

  • Murray S (2012) The brain’s connective core and its role in animal cognition. Philos Trans R Soc Lond Ser B Biol Sci 367(1603):2704–2714. doi:10.1098/rstb.2012.0128

    Article  Google Scholar 

  • Nee DE, Jahn A, Brown JW (2014) Prefrontal cortex organization: dissociating effects of temporal abstraction, relational abstraction, and integration with FMRI. Cereb Cortex 24(9):2377–2387

    Google Scholar 

  • Ongür D, Price JL (2000) The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 10(3):206–219

    Google Scholar 

  • Ongür D, Ferry AT, Price JL (2003) Architectonic subdivision of the human orbital and medial prefrontal cortex. J Comp Neurol 460(3):425–449. doi:10.1002/cne.10609. PMID 12692859

    Article  Google Scholar 

  • Opris I (2013) Inter-laminar microcircuits across the neocortex: repair and augmentation. Front Syst Neurosci 7:80. doi:10.3389/fnsys.2013.00080

    Article  Google Scholar 

  • Opris I, Bruce CJ (2005) Neural circuitry of judgment and decision mechanisms. Brain Res Rev 48:509–528

    Google Scholar 

  • Opris I, Casanova MF (2014) Prefrontal cortical minicolumn: from executive control to disrupted cognitive processing. Brain 137(7):1863–1875. doi:10.1093/brain/awt359

    Article  Google Scholar 

  • Opris I, Ferrera VP (2014) Modifying cognition and behavior with electrical microstimulation: implications for cognitive prostheses. Neurosci Biobehav Rev 47:321–335. doi:10.1016/j.neubiorev.2014.09.003

    Article  Google Scholar 

  • Opris I, Barborica A, Ferrera VP (2005) Microstimulation of dorsolateral prefrontal cortex biases saccade target selection. J Cogn Neurosci 17(6):893–904

    Google Scholar 

  • Opris I, Hampson RE, Stanford TR, Gerhardt GA, Deadwyler SA (2011) Neural activity in frontal cortical cell layers: evidence for columnar sensorimotor processing. J Cogn Neurosci 23: 1507–1521

    Google Scholar 

  • Opris I, Fuqua JL, Huettl P, Gerhardt GA, Berger TW, Hampson RE, Deadwyler SA (2012a) Closing the loop in primate prefrontal cortex: inter-laminar processing. Front Neural Circ 6:88. doi:10.3389/fncir.2012.00088

    Article  Google Scholar 

  • Opris I, Hampson RE, Gerhardt GA, Berger TW, Deadwyler SA (2012b) Columnar processing in primate pFC: evidence for executive control microcircuits. J Cogn Neurosci 24(12):2334–2347

    Google Scholar 

  • Opris I, Santos LM, Song D, Berger TW, Gerhardt GA, Hampson RE, Deadwyler SA (2013) Prefrontal cortical microcircuits bind perception to executive control. Sci Rep 3:2285. doi:10.1038/srep02285

    Article  Google Scholar 

  • Opris I, Fuqua JL, Gerhardt GA, Hampson RE, Deadwyler SA (2015a) Prefrontal cortical recordings with biomorphic MEAs reveal complex columnar-laminar microcircuits for BCI/BMI implementation. J Neurosci Methods 15(244):104–113

    Google Scholar 

  • Opris I, Gerhardt GA, Hampson RE, Deadwyler SA (2015b) Disruption of columnar and laminar cognitive processing in primate prefrontal cortex following cocaine exposure. Front Syst Neurosci 9:79. doi:10.3389/fnsys.2015.00079

    Article  CAS  Google Scholar 

  • Opris I, Popa IL, Casanova MF (2015c) Prefrontal cortical microcircuits of executive control. Chapter 10. In: Casanova MF, Opris I (eds) Recent advances on the modular organization of the cerebral cortex. Springer, The Netherlands, pp 157–179

    Google Scholar 

  • Opris I, Santos LM, Gerhardt GA, Song D, Berger TW, Hampson RE, Deadwyler SA (2015d) Distributed encoding of spatial and object categories in primate hippocampal microcircuits. Front Neurosci 9:317. doi:10.3389/fnins.2015.00317

    Article  Google Scholar 

  • Packer AM, Yuste R (2011) Dense, unspecific connectivity of neocortical parvalbumin-positive interneurons: a canonical microcircuit for inhibition? J Neurosci 31(37):13260–13271. doi: https://doi.org/10.1523/JNEUROSCI.3131-11.2011

    CAS  Google Scholar 

  • Penfield W, Jasper H (1954) Epilepsy and the functional anatomy of the brain. Churchill Livingstone, London

    Google Scholar 

  • Petrides M, Pandya DN (2007) Efferent association pathways from the rostral prefrontal cortex in the macaque monkey. J Neurosci 27(43):11573–11586. doi:10.1523/JNEUROSCI.2419-07.2007 PMID 17959800

  • Pinker S (1997) Words and rules in the human brain. Nature 387(6633):547–548

    Google Scholar 

  • Popa I, Donos C, Barborica A, Opris I, Mălîia MD, Ene M, Ciurea J, Mîndruţă I (2016) Intrusive Thoughts Elicited by Direct Electrical Stimulation during Stereo-Electroencephalography. Front Neurol 7:114. https://doi.org/10.3389/fneur.2016.00114

    Article  Google Scholar 

  • Quintana J, Fuster JM (1999) From perception to action: temporal integrative functions of prefrontal and parietal neurons, Cereb. Cortex 9(3):213–221

    CAS  Google Scholar 

  • Ramnani N, Owen AM (2004) Anterior prefrontal cortex: insights into function from anatomy and neuroimaging. Nat Rev Neurosci 5(3):184–194. doi:10.1038/nrn1343. PMID 14976518

    Article  CAS  Google Scholar 

  • Rao SC, Rainer G, Miller EK (1997) Integration of what and where in the primate prefrontal cortex. Science 276:821–824

    CAS  Google Scholar 

  • Ratcliff R (1978) A theory of memory retrieval. Psychol Rev 85:59–108

    Google Scholar 

  • Ratcliff R (2001) Putting noise into neurophysiological models of simple decision making. Nat Neurosci 4:336–337

    CAS  Google Scholar 

  • Ratcliff R (2002) A diffusion model account of response time and accuracy in a brightness discrimination task: fitting real data and failing to fit fake but plausible data. Psychon Bull Rev 9:278–291

    Google Scholar 

  • Ratcliff R, Tuerlinckx F (2002) Estimating parameters of the diffusion model: approaches to dealing with contaminant reaction times and parameter variability. Psychon Bull Rev 9:438–481

    Google Scholar 

  • Ratcliff R, Cherian A, Segraves M (2003) A comparison of macaque behavior and superior colliculus neuronal activity to predictions from models of two-choice decisions. J Neurophysiol 90:1392–1407

    Google Scholar 

  • Ratcliff R, Hasegawa YT, Hasegawa RP, Childers R, Smith PL, Segraves MA (2011) Inhibition in superior colliculus neurons in a brightness discrimination task? Neural Comput 23(7): 1790–1820

    Google Scholar 

  • Reddi BA, Carpenter RH (2000) The influence on urgency on decision time. Nat Neurosci 3: 827–830

    CAS  Google Scholar 

  • Santos L, Opris I, Hampson R, Godwin DW, Gerhardt G, Deadwyler S (2014) Functional dynamics of primate cortico-striatal networks during volitional movements. Front Syst Neurosci 8:27. doi:10.3389/fnsys.2014.00027

    Article  Google Scholar 

  • Sara SJ (2009) The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci 10:211–223. doi:10.1038/nrn2573

    Article  CAS  Google Scholar 

  • Schall JD (1999) Weighing the evidence: how the brain makes a decision. Nat Neurosci 2:108–109

    CAS  Google Scholar 

  • Schall JD (2001) Neural basis of deciding, choosing and acting. Nat Rev Neurosci 2:33–42

    CAS  Google Scholar 

  • Schall JD (2002) The neural selection and control of saccades by the frontal eye field. Philos Trans R Soc Lond Ser B Biol Sci 357:1073–1082

    Google Scholar 

  • Semendeferi K, Armstrong E, Schleicher A, Zilles K, Van Hoesen GW (2001) Prefrontal cortex in humans and apes: a comparative study of area 10. Am J Phys Anthropol 114(3):224–241. doi:10.1002/ajpa.20947 PMID 11241188

  • Shadlen MN, Newsome WT (1998) The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci 18:3870–3896

    Google Scholar 

  • Shadlen MN, Newsome WT (2001) Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J Neurophysiol 86:1916–1936

    CAS  Google Scholar 

  • Sporns O, Betzel RF (2016) Modular brain networks. Annu Rev Psychol 67:613–640. doi:10.1146/annurev-psych-122414-033634

    Article  Google Scholar 

  • Swadlow HA, Gusev AG, Bezdudnaya T (2002) Activation of a cortical column by a thalamocortical impulse. Journal of Neuroscience 22:7766–7773

    CAS  Google Scholar 

  • Szentágothai MA, Arbib J (1975) Conceptual Models of Neural Organization. MIT Press, Cambridge, MA

    Google Scholar 

  • Takeuchi D, Hirabayashi T, Tamura K, Miyashita Y (2011) Reversal of interlaminar signal between sensory and memory processing in monkey temporal cortex. Science 331:1443–1447

    CAS  Google Scholar 

  • Tierney PL, Thierry AM, Glowinski J, Deniau JM, Gioanni Y (2008) Dopamine modulates temporal dynamics of feedforward inhibition in rat prefrontal cortex in vivo. Cereb Cortex 18(10):2251–2262. doi:10.1093/cercor/bhm252

    Article  CAS  Google Scholar 

  • Tishby N, Polani D (2011) Information theory of decisions and actions. In: Cutsuridis V, Hussain A, Taylor JG (eds) Perception-action cycle. Models, architectures, and hardware, Series in Cognitive and Neural Systems. Springer, New York, pp 601–636

    Google Scholar 

  • Tsien JZ (2015a) Principles of Intelligence: On Evolutionary Logic of the Brain. Front Syst Neurosci 9:186. https://doi.org/10.3389/fnsys.2015.00186

    Article  Google Scholar 

  • Tsien JZ (2015b) A Postulate on the Brain’s Basic Wiring Logic. Trends Neurosci 38(11):669–671. https://doi.org/10.1016/j.tins.2015.09.002

    Article  CAS  Google Scholar 

  • Tsujimoto S, Genovesion A, Wise SP (2010) Evaluating self-generated decisions in frontal pole cortex of monkeys. Nat Neurosci 13:120–126. doi:10.1038/nn.2453

    Article  CAS  Google Scholar 

  • van den Heuvel MP, Sporns O (2011) Rich-club organization of the human connectome. J Neurosci 31(44):15775–15786. doi:10.1523/JNEUROSCI.3539-11.2011

    Article  CAS  Google Scholar 

  • Van der Heuvel MP, Sporns O (2013) Network hubs in the human brain. Trends Cogn Sci 17(12):683–696. https://doi.org/10.1016/j.tics.2013.09.012

    Article  Google Scholar 

  • Verbruggen F, Logan GD (2008) Response inhibition in the stop-signal paradigm. Trends Cogn Sci. Nov 2008; 12(11):418–424

    Google Scholar 

  • Wallis JD (2010) Polar exploration. Nat Neurosci 13(1):7–8. doi:10.1038/nn0110-7. PMID 20033080

    Article  CAS  Google Scholar 

  • Wang X-J (2002) Probabilistic decision making by slow reverberation in cortical circuits. Neuron 36:955–968

    CAS  Google Scholar 

  • Weiler N, Wood L, Yu J, Solla SA, Shepherd GM (2008) Top–down laminar organization of the excitatory network in motor cortex. Nat Neurosci 11:360–366

    CAS  Google Scholar 

  • Wise SP, Murray EA, Gerfen CR (1996) The frontal cortex-basal ganglia system in primates. Crit Rev Neurobiol 10:317–356

    CAS  Google Scholar 

  • Xie K, Fox GE, Liu J, Lyu C, Lee JC, Kuang H, Jacobs S, Li M, Liu T, Song S, Tsien JZ (2016) Brain Computation Is Organized via Power-of-Two-Based Permutation Logic. Front Syst Neurosci 10:95

    Google Scholar 

  • Young CB, Raz G, Everaerd D, Beckmann CF, Tendolkar I, Hendler T, Fernández G, Hermans EJ (2016) Dynamic shifts in large-scale brain network balance as a function of arousal. J Neurosci 37(2):281–290. DOI: https://doi.org/10.1523/JNEUROSCI.1759-16.2017

    Google Scholar 

  • Zhang J, Hughes LE, Rowe JB (2012) Selection and inhibition mechanisms for human voluntary action decisions. NeuroImage 63(1):392–402. doi:10.1016/j.neuroimage.2012.06.058

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioan Opris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Opris, I., Casanova, M.F., Lebedev, M.A., Popescu, A.I. (2017). Prefrontal Cortical Microcircuits Support the Emergence of Mind. In: Opris, I., Casanova, M.F. (eds) The Physics of the Mind and Brain Disorders. Springer Series in Cognitive and Neural Systems, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-29674-6_4

Download citation

Publish with us

Policies and ethics