Inferring Activities and Optimal Trips: Lessons From Singapore’s National Science Experiment

  • Barnabé Monnot
  • Erik Wilhelm
  • Georgios Piliouras
  • Yuren Zhou
  • Daniel Dahlmeier
  • Hai Yun Lu
  • Wang Jin
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 426)

Abstract

The following paper presents three novel and efficient algorithms to tackle pressing questions asked by city planners as well as policy makers: Where are people starting and ending their trips? Which activities are people traveling to/from? Are they taking the most efficient route? In order to capture large-scale travel data, a novel sensor was developed by the Singapore University of Technology and Design together with industrial partners. Using computationally simple and scalable algorithms, we are able to understand the large amounts of data collected by the sensors and shed light on the three questions above.

Keywords

Urban data Large-scale experiment Sensor data Optimal routing Data visualization 

References

  1. 1.
    Caceres, N., Wideberg, J.P., Benitez, F.G.: Deriving origin destination data from a mobile phone network. Intell. Transp. Syst. IET 1(1), 15–26 (2007)CrossRefGoogle Scholar
  2. 2.
    Choudhury, T., Consolvo, S., Harrison, B., Hightower, J., Lamarca, A., LeGrand, L., Rahimi, A., Adam Rea, G., Bordello, B.H., et al.: The mobile sensing platform: an embedded activity recognition system. IEEE Pervasive Comput. 7(2), 32–41 (2008)CrossRefGoogle Scholar
  3. 3.
    Cottrill, C., Pereira, F., Zhao, F., Dias, I., Lim, H., Ben-Akiva, M., Zegras, P.: Future mobility survey: experience in developing a smartphone-based travel survey in Singapore. Transp. Res. Rec.: J. Transp. Res. Board 2354, 59–67 (2013)Google Scholar
  4. 4.
    Du, J., Aultman-Hall, L.: Increasing the accuracy of trip rate information from passive multi-day gps travel datasets: automatic trip end identification issues. Transp. Res. Part A: Policy Pract. 41(3), 220–232 (2007)Google Scholar
  5. 5.
    Axhausen, K.W., Schönfelder, S., Wolf, J., Oliveira, M., Samaga, U.: 80 weeks of gps-traces: approaches to enriching the trip information (2003)Google Scholar
  6. 6.
    Schüssler, N., Axhausen, K.W.: Identifying trips and activities and their characteristics from gps raw data without further information (2008)Google Scholar
  7. 7.
    Jun, J., Guensler, R., Ogle, J.: Smoothing methods to minimize impact of global positioning system random error on travel distance, speed, and acceleration profile estimates. Transp. Res. Rec.: J. Transp. Res. Board 1972, 141–150 (2006)CrossRefGoogle Scholar
  8. 8.
    Jariyasunant, J., Sengupta, R., Walker, J.: Overcoming battery life problems of smartphones when creating automated travel diaries. In: Proceedings of the 13th International Conference on Travel Behavior Research (2012)Google Scholar
  9. 9.
    Kumar, S., Paefgen, J., Wilhelm, E., Sarma, S.E.: Integrating on-board diagnostics speed data with sparse gps measurements for vehicle trajectory estimation. In: 2013 Proceedings of SICE Annual Conference (SICE), pp. 2302–2308. IEEE (2013)Google Scholar
  10. 10.
    Tsui, A.W., Lin, W.-C., Chen, W.-J., Huang, P., Chu, H.-H.: Accuracy performance analysis between war driving and war walking in metropolitan wi-fi localization. IEEE Trans. Mobile Comput. 9(11), 1551–1562 (2010)Google Scholar
  11. 11.
    Stopher, P.R., FitzGerald, C.: Processing gps data from travel surveysGoogle Scholar
  12. 12.
    Bohte, W., Maat, K.: Deriving and validating trip purposes and travel modes for multi-day gps-based travel surveys: a large-scale application in the Netherlands. Transp. Res. Part C: Emerg. Technol. 17(3), 285–297 (2009)CrossRefGoogle Scholar
  13. 13.
    Schönfelder, S., Axhausen, K.W.: Urban Rhythms and Travel Behaviour: Spatial and Temporal Phenomena of Daily Travel. Ashgate Publishing Ltd. (2010)Google Scholar
  14. 14.
    Parent, C., Spaccapietra, S., Renso, C., Andrienko, G., Andrienko, N., B, V., Damiani, M.L., Gkoulalas-Divanis, A., Macedo, J., Pelekis, N., et al.: Semantic trajectories modeling and analysis. ACM Comput. Surv. (CSUR) 45(4), 42 (2013)CrossRefGoogle Scholar
  15. 15.
    Zhang, N., Kee, J., Loh, G., Tippenhauer, N., Wilhelm, E., Zhou, Y.: Sensg: large-scale deployment of wearable sensors for trip and transport mode logging. Submitted to Transportation Research Board Annual Meeting 2016 (2016)Google Scholar
  16. 16.
    Chang, R., Lee, A., Ghoniem, M., Kosara, R., Ribarsky, W., Yang, J., Suma, E., Ziemkiewicz, C., Kern, D., Sudjianto, A.: Scalable and interactive visual analysis of financial wire transactions for fraud detection. Inf. Vis. 7(1), 63–76 (2008)CrossRefGoogle Scholar
  17. 17.
    Cox, K.C., Eick, S.G., Wills, G.J., Brachman, R.J.: Brief application description; visual data mining: recognizing telephone calling fraud. Data Mining Knowl. Discov. 1(2), 225–231 (1997)Google Scholar
  18. 18.
    Bostock, M., Ogievetsky, V., Heer, J.: D3 data-driven documents. IEEE Trans. Vis. Comput. Graph. 17(12), 2301–2309 (2011)CrossRefGoogle Scholar
  19. 19.
    Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory, vol. 1. Cambridge University Press, CambridgeGoogle Scholar
  20. 20.
    Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the frequency moments. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC ‘96, pp. 20–29. ACM, New York (1996)Google Scholar
  21. 21.
    Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data stream systems. In: Proceedings of the Twenty-first ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS ‘02, pp. 1–16. ACM, New York (2002)Google Scholar
  22. 22.
    Rubinfeld, R., Shapira, A.: Sublinear time algorithms. SIAM J. Discret. Math. 25(4), 1562–1588 (2011)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Barnabé Monnot
    • 1
  • Erik Wilhelm
    • 2
  • Georgios Piliouras
    • 1
  • Yuren Zhou
    • 2
  • Daniel Dahlmeier
    • 3
  • Hai Yun Lu
    • 3
  • Wang Jin
    • 3
  1. 1.Engineering Systems and DesignSingapore University of Technology and DesignSingaporeSingapore
  2. 2.Engineering Product DevelopmentSingapore University of Technology and DesignSingaporeSingapore
  3. 3.SAP SingaporeSingaporeSingapore

Personalised recommendations