Advertisement

From Proposition to Program

Embedding the Refinement Calculus in Coq
  • Wouter Swierstra
  • Joao Alpuim
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9613)

Abstract

The refinement calculus and type theory are both frameworks that support the specification and verification of programs. This paper presents an embedding of the refinement calculus in the interactive theorem prover Coq, clarifying the relation between the two. As a result, refinement calculations can be performed in Coq, enabling the semi-automatic calculation of formally verified programs from their specification.

Keywords

Proof Obligation Proof Assistant Loop Body Executable Code Separation Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The first author would like to thank Peter Hancock for his patience in explaining the relation between interaction structures and the refinement calculus. The first author’s visit to Scotland was funded by the London Mathematical Society’s Scheme 7 grant.

References

  1. Altenkirch, T., Morris, P.: Indexed containers. In: 24th Annual IEEE Symposium on Logic in Computer Science, LICS 2009, pp. 227–285 (2009)Google Scholar
  2. Back, R.J.R., von Wright, J.: Refinement concepts formalized in higher order logic. Formal Aspects Comput. 2, 247–272 (1989)CrossRefMATHGoogle Scholar
  3. Von Wright, J.: Refinement Calculus: Refinement Calculus. Texts in Computer Science. Springer, New York (1998)MATHGoogle Scholar
  4. Back, R.J.R., von Wright, J.: Refinement concepts formalised in higher order logic. Formal Aspects Comput. 2(1), 247–272 (1990)CrossRefMATHGoogle Scholar
  5. Back, R.J.R.: On the Correctness of Refinement in Program Development. PhD thesis, University of Helsinki (1978)Google Scholar
  6. Boulmé, S.: Intuitionistic refinement calculus. In: Della Rocca, S.R. (ed.) TLCA 2007. LNCS, vol. 4583, pp. 54–69. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. Butler, M.J., Grundy, J., Långbacka, T., Ruksenas, R., Wright, J.V.: The refinement calculator. In: Formal Methods Pacific (1997)Google Scholar
  8. Chlipala, A., Malecha, G., Morrisett, G., Shinnar, A., Wisnesky, R.: Effective interactive proofs for higher-order imperative programs. In: International Conference on Functional Programming, ICFP 2009, pp. 79–90 (2009)Google Scholar
  9. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs (1976)Google Scholar
  10. Dongol, B., Gomes, V.B.F., Struth, G.: A program construction and verification tool for separation logic. In: Hinze, R., Voigtländer, J. (eds.) MPC 2015. LNCS, vol. 9129, pp. 137–158. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  11. Floyd, R.W.: Assigning meanings to programs. Math. Aspects Comput. Sci 19(19–32), 1 (1967)MathSciNetMATHGoogle Scholar
  12. Hancock, P., Hyvernat, P.: Programming interfaces and basic topology. Ann. Pure Appl. Logic 137(1), 189–239 (2006)MathSciNetCrossRefMATHGoogle Scholar
  13. Setzer, A., Hancock, P.: Interactive programs in dependent type theory. In: Clote, P.G., Schwichtenberg, H. (eds.) CSL 2000. lncs, vol. 1862, pp. 317–339. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. Hancock, P., Setzer, A.: Specifying interactions with dependent types. In: Workshop on subtyping and dependent types in programming (2000b)Google Scholar
  15. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10), 576–580 (1969)CrossRefMATHGoogle Scholar
  16. Morgan, C.: Programming from specifications. Prentice-Hall Inc, Upper Saddle River (1990)Google Scholar
  17. Nanevski, A., Morrisett, G., Shinnar, A., Govereau, P., Birkedal, L.: Ynot: Dependent types for imperative programs. In: International Conference on Functional Programming, ICFP 2008, pp. 229–240 (2008)Google Scholar
  18. Flemming, N., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer, Heidelberg (1999)MATHGoogle Scholar
  19. Swierstra, W.: A hoare logic for the state monad. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 440–451. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. Swierstra, W.: A functional specification of effects. PhD thesis, University of Nottingham (2009)Google Scholar
  21. Swierstra, W., Altenkirch, T.: Beauty in the beast: In: Proceedings of the ACM SIGPLAN Workshop on Haskell Workshop, pp. 25-36. ACM (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Universiteit UtrechtUtrechtThe Netherlands
  2. 2.RiskCoUtrechtThe Netherlands

Personalised recommendations