Interaction Among Rhizospheric Microbes, Soil, and Plant Roots: Influence on Micronutrient Uptake and Bioavailability

  • Vivek KumarEmail author
  • Manoj Kumar
  • Neeraj Shrivastava
  • Sandeep Bisht
  • Shivesh Sharma
  • Ajit Varma


Soils resulting in micronutrient deficiency in agricultural land and pastureland are increasing globally. Such micronutrient deficiency is due to lower nutrient availability, lower nutrient mobility, and lower capacity of plants to take up nutrients from the rhizosphere. The rhizosphere extends up to a few millimeters from the root surface into the surrounding soil and is rich in microbial activity and diversity. The activity and types of microbes and the soil characteristics influence the uptake and transport of micronutrients in the roots. From the root zone, mobilization of micronutrients in the edible part of plants and their bioavailability is another question. The availability and uptake of various micronutrients in the rhizosphere is again influenced by soil properties and plant root exudates, and depends on microbial interactions with plant roots. The micronutrient transfer dynamics from the microbial cell to the plant cell is also influenced by the physiology of plant–microbe interactions. For diffusion-supplied micronutrients, if a large diffusion gradient exists between the root surfaces and the soil, a large amount could be shipped toward the roots. Conversely, when the capacity of root cells to take up micronutrients exceeds the rate of nutrient replenishment in the root zone, the uptake rate is regulated by nutrient availability rather than the capacity of plant roots to absorb nutrients. Plants exude a wide range of organic compounds and inorganic ions into the rhizosphere, changing the micro-chemical and biological zone of the rhizosphere and enhancing acclimatization or modification toward a particular biotic and abiotic environment. Absolute understanding of the multifaceted and intricate interactions dominating the relationship among plants, microbes, and soil that influence the composition of root exudates is still far off. Understanding of the plant–microbe–soil interaction mechanism for the uptake and mobilization of micronutrients and their bioavailability in the edible part of plants will open an avenue in biological science which could help solve the problem of micronutrient deficiency in consumers.


Bioavailability Micronutrients Microbes Rhizosphere 


  1. Akiyama K, Hayashi H (2006) Strigolactones: chemicals signals for fungal symbionts and parasitic weeds in plant roots. Ann Bot 97:925–931CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ardakani MR, Mazaheri D, Shirani Rad AH, Mafakheri S (2011) Uptake of micronutrients by wheat (Triticum aestivum L.) in a sustainable agroecosystem. Middle-East J Sci Res 7(4):444–451Google Scholar
  3. Argüello JM (2003) Identification of ion-selectivity determinants in heavy-metal transport P1B-type ATPases. J Membr Biol 195:93–108CrossRefPubMedGoogle Scholar
  4. Argüello JM, Eren E, González-Guerrero M (2007) The structure and function of heavy metal transport P1B-ATPases. Biometals 20:233–248CrossRefPubMedGoogle Scholar
  5. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in the rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266CrossRefPubMedGoogle Scholar
  6. Balakrishnan N, Subramanian KS (2012) Mycorrhizal symbiosis and bioavailability of micronutrients in maize grain. Maydica 57:129–138Google Scholar
  7. Barberon M, Zelazny E, Robert S, Conéjéro G, Curie C, Friml J, Vert G (2011) Monoubiquitin dependent endocytosis of the IRON-REGULATED TRANSPORTER 1 (IRT1) transporter controls iron uptake in plants. Proc Natl Acad Sci U S A 108(32):E450–E458CrossRefPubMedPubMedCentralGoogle Scholar
  8. Belnap J, Hawkes CV, Firestone MK (2003) Boundaries in miniature: two examples from soil. Bioscience 53:739–749CrossRefGoogle Scholar
  9. Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13CrossRefPubMedGoogle Scholar
  10. Biari A, Gholami A, Rahmani HA (2008) Growth promotion and enhanced nutrient uptake of maize (Zea mays L.) by application of plant growth promoting rhizobacteria in arid region of Iran. J Biol Sci 8(6):1015–1020CrossRefGoogle Scholar
  11. Black R (2003) Micronutrient deficiency: an underlying cause of morbidity and mortality. Bull World Health Organ 81(2):79–79PubMedPubMedCentralGoogle Scholar
  12. Borrill P, Connorton JM, Balk J, Miller AJ, Sanders D, Uauy C (2014) Biofortification of wheat grain with iron and zinc: integrating novel genomic resources and knowledge from model crops. Front Plant Sci 5:1–8CrossRefGoogle Scholar
  13. Bouwmeester HJ, Roux C, Lopez-Raez JA, Becard G (2007) Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci 12:224–230CrossRefPubMedGoogle Scholar
  14. Brimecombe MJ, de Leij FA, Lynch JM (2001) The effect of root exudates on rhizosphere microbial populations. In: Pinton E, Varanini Z, Nanniperi R (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Springer, Dordrecht, pp 95–140Google Scholar
  15. Cakmak I, Pfeiffer WH, Clafferty BM (2010) Biofortification of durum wheat with zinc and iron. Cereal Chem 87(1):10e20CrossRefGoogle Scholar
  16. Calton JB (2010) Prevalence of micronutrient deficiency in popular diet plans. J Int Soc Sports Nutr 7:24–32CrossRefPubMedPubMedCentralGoogle Scholar
  17. Carvalhais LC, Dennis PG, Badri DV, Tyson GW, Vivanco JM, Schenk PM (2013) Activation of the jasmonic acid plant defense pathway alters the composition of rhizosphere bacterial communities. PLoS One 8(3), e56457CrossRefPubMedPubMedCentralGoogle Scholar
  18. Cellier MFM (2012) Nramp: from sequence to structure and mechanism of divalent metal import. Curr Top Membr 69:249–293CrossRefPubMedGoogle Scholar
  19. Curie C, Alonso JM, Jean ML, Ecker JR, Briat JF (2000) Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Biochem J 347:749–755CrossRefPubMedPubMedCentralGoogle Scholar
  20. Desbrosses-Fonrouge AG, Voigt K, Schroder A, Arrivault S, Thomine S, Kramer U (2005) Arabidopsis thaliana MTP1 is a Zn transporter in the vacuolar membrane which mediates Zn detoxification and drives leaf Zn accumulation. FEBS Lett 579:4165–4174CrossRefPubMedGoogle Scholar
  21. Doornbos RF, van Loon LC, Bakker PAHM (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. Agron Sustain Dev 32:227–243CrossRefGoogle Scholar
  22. Eide DJ (2005) The Zip family of zinc transporters. In: Iuchi S, Kuldell N (eds) Zinc finger proteins: from atomic contact to cellular function.. Molecular biology intelligence unit. Springer, New York, pp 261–264Google Scholar
  23. Faure D, Vereecke D, Leveau JHJ (2009) Molecular communication in the rhizosphere. Plant Soil 321:279–303. doi: 10.1007/s1104-008-9839-2 CrossRefGoogle Scholar
  24. Franche C, Lindström K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59. doi: 10.1007/s11104-0089833-8 CrossRefGoogle Scholar
  25. Gadkar V, David-Schwartz R, Kunik T, Kapulnik Y (2001) Arbuscular mycorrhizal fungal colonization. Factors involved in host recognition. Plant Physiol 127(4):1493–1499CrossRefPubMedPubMedCentralGoogle Scholar
  26. Garmory HS, Titball RW (2004) ATP-binding cassette transporters are targets for the development of antibacterial vaccines and therapies. Infect Immun 72(12):6757–6763CrossRefPubMedPubMedCentralGoogle Scholar
  27. Goteti PK, Emmanuel LDA, Desai S, Shaik MHA (2013) Prospective zinc solubilising bacteria for enhanced nutrient uptake and growth promotion in maize (Zea mays L.). Int J Microbiol. ID 869697, 10.1155/2013/869697
  28. Govindaraj M, Kannan AP (2011) Implication of micronutrients in agriculture and health with special reference to iron and zinc. Int J Agric Manage Dev 1(4):207–220Google Scholar
  29. Grotz N, Guerinot ML (2006) Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochim Biophys Acta 1763:595–608CrossRefPubMedGoogle Scholar
  30. Guerinot ML (2000) The ZIP family of metal transporters. Biochim Biophys Acta 1465:190–198CrossRefPubMedGoogle Scholar
  31. Gustin JL, Zanis MJ, Salt DE (2011) Structure and evolution of the plant cation diffusion facilitator family of ion transporters. BMC Evol Biol 11:76–87CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hall JL, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54(393):2601–2613CrossRefPubMedGoogle Scholar
  33. Hennessy A, Walton J, McNulty B, Nugent A, Gibney M, Flynn A (2014) Micronutrient intakes and adequacy of intake in older adults in Ireland. Proc Nutr Soc 73(OCE2):E9Google Scholar
  34. Hotz C, Gibson RS (2007) Traditional food-processing and preparation practices to enhance the bioavailability of micronutrients in plant-based diets. J Nutr 137(4):1097–1100PubMedGoogle Scholar
  35. Hussain D, Haydon MJ, Wang Y, Wong E, Sherson SM, Young J, Camakaris J, Harper JF, Cobbett CS (2006) P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 16(5):1327–1339CrossRefGoogle Scholar
  36. Imran M, Arshad M, Khalid A, Kanwal S, Crowley DE (2014) Perspectives of rhizosphere microflora for improving Zn bioavailability and acquisition by higher plants. Int J Agric Biol 16:653–662Google Scholar
  37. Jaeger CH, Lindow SE, Miller S, Clark E, Firestone MK (1999) Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and tryptophan. Appl Environ Microbiol 65:2685–2690PubMedPubMedCentralGoogle Scholar
  38. Kamilova F, Kravchenko LV, Shaposhnikov AI, Azarova A, Makarova N, Lugtenberg B (2006) Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol Plant Microbe Interact 19(3):250–256CrossRefPubMedGoogle Scholar
  39. Kang J, Park J, Choi H, Burla B, Kretzschmar T, Lee Y, Martinoia E (2011) Plant ABC transporters. Arabidopsis Book 9, e0153CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kobae Y, Uemura T, Sato MH, Ohnishi M, Mimura T, Nakagawa T, Maeshima M (2004) Zinc transporter of Arabidopsis thaliana AtMTP1 is localized to vacuolar membranes and implicated in zinc homeostasis. Plant Cell Physiol 45:1749–1758CrossRefPubMedGoogle Scholar
  41. Kothari SK, Marschner H, Romheld V (1990) Direct and indirect effects of VA mycorrhizal fungi and rhizosphere microorganisms on acquisition of mineral nutrients by maize (Zea mays) in a calcareous soil. New Phytol 116:637–645CrossRefGoogle Scholar
  42. Krämer U, Talke IN, Hanikenne M (2007) Transition metal transport. FEBS Lett 581(12):2263–2272CrossRefPubMedGoogle Scholar
  43. Kuffner M, Puschenreiter M, Wieshammer G, Gorfer M, Sessitsch A (2008) Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 304:35–44CrossRefGoogle Scholar
  44. Kumar V, Narula N (1999) Solubilization of inorganic phosphates and growth emergence of wheat as affected by Azotobacter chroococcum mutants. Biol Fertil Soil 28(3):301–305CrossRefGoogle Scholar
  45. Kumar V, Bisht S, Teotia P, Sharma S, Solanki AS (2013) Interaction between G. fasciculatum and A. chroococcum for yield, nutrients uptake and cost economy of Lepidium sativum in Indian arid region. Thai J Agric Sci 46(1):21–28Google Scholar
  46. Lewinson O, Lee AT, Rees DC (2009) A P-type ATPase importer that discriminates between essential and toxic transition metals. Proc Natl Acad Sci U S A 106(12):4677–4682CrossRefPubMedPubMedCentralGoogle Scholar
  47. Li XL, Marschner H, Romheld V (1991) Acquisition of phosphorus and copper by VA mycorhizal hyphae and root to shoot transport in white clover. Plant Soil 136:49–57CrossRefGoogle Scholar
  48. Li WC, Ye ZH, Won MH (2007) Effects of bacteria on enhanced metal uptake of the Cd/Zn-hyperaccumulating plant, Sedum alfredii. J Expt Bot 58(15-16):4173–4182CrossRefGoogle Scholar
  49. Lin Z, Fernández-Robledo JA, Cellier MFM, Vast GR (2009) Metals and membrane metal transporters in biological systems: the role(s) of Nramp in host-parasite interactions. J Argent Chem Soc 97:210–225Google Scholar
  50. Liu A, Hamel C, Hamilton RI, Ma BL, Smith DL (2000) Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza 9:331–336CrossRefGoogle Scholar
  51. Loh J, Pierson EA, Pierson LS, Stacey G, Chatterjee A (2002) Quorum sensing in plant associated bacteria. Curr Opin Plant Biol 5:285–290CrossRefPubMedGoogle Scholar
  52. López MA, Bannenberg G, Castresana C (2008) Controlling hormone signaling is a plant and pathogen challenge for growth and survival. Curr Opin Plant Biol 11(4):420–427CrossRefPubMedGoogle Scholar
  53. Marilley L, Aragno M (1999) Phylogenetic diversity of bacterial communities differing in degree of proximity of Lolium perenne and Trifolium repens roots. App Soil Ecol 13:127–136CrossRefGoogle Scholar
  54. Montanini B, Blaudez D, Jeandroz S, Sanders D, Chalot M (2007) Phylogenetic and functional analysis of the cation diffusion facilitator (CDF) family: improved signature and prediction of substrate specificity. BMC Genomics 8:107–112CrossRefPubMedPubMedCentralGoogle Scholar
  55. Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P (2009) AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149:894–904CrossRefPubMedPubMedCentralGoogle Scholar
  56. Nevo Y, Nelson N (2006) The NRAMP family of metal-ion transporters. Biochim Biophys Acta 1763(7):609–620CrossRefPubMedGoogle Scholar
  57. Noori MSS, Saud HM (2012) Potential plant growth promoting activity of Pseudomonas sp isolated from paddy soil in Malaysia as biocontrol agent. Plant Pathol Microbiol 3(2):1–4Google Scholar
  58. Nyoki D, Ndakidemi PA (2014) Influence of Bradyrhizobium japonicum and phosphorus on micronutrient uptake in cowpea. A case study of zinc (Zn), iron (Fe), copper (Cu) and manganese (Mn). Am J Plant Sci 5:427–435CrossRefGoogle Scholar
  59. Okkeri J, Haltia T (2006) The metal-binding sites of the zinc-transporting P-type ATPase of Escherichia coli. Lys693 and Asp714 in the seventh and eighth transmembrane segments of ZntA contribute to the coupling of metal binding and ATPase activity. Biochim Biophys Acta 1757(7):1485–1495CrossRefPubMedGoogle Scholar
  60. Paszkowski U (2006) Mutualism and parasitism: the yin and yang of plant symbioses. Curr Opin Plant Biol 9:364–370CrossRefPubMedGoogle Scholar
  61. Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SC (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5(5):308–316CrossRefPubMedGoogle Scholar
  62. Podar D, Scherer J, Noordally Z, Herzyk P, Nies D, Sanders D (2012) Metal selectivity determinants in a family of transition metal transporters. J Biol Chem 287:3185–3196CrossRefPubMedGoogle Scholar
  63. Prasad AS (2013) Discovery of human zinc deficiency: its impact on human health and disease. Adv Nutr 4:176–190CrossRefPubMedPubMedCentralGoogle Scholar
  64. Purakayastha TJ, Chhonkar PK (2001) Influence of vesicular arbuscular mycorrhizal fungi (Glomus etunicatum L.) on mobilization of Zn in wetland rice (Oryza sativa L.). Biol Fertil Soil 33:323–327CrossRefGoogle Scholar
  65. Ryan MH, Angus JF (2003) Arbuscular mycorrhizal fungi increase zinc uptake but do not influence yield or P uptake of field crops in SE Australia. Plant Soil 250:225–239Google Scholar
  66. Ryan MH, McInerney JK, Record IR, Angus JF (2008) Zinc bioavailability in wheat grain in relation to phosphorus fertiliser, crop sequence and mycorrhizal fungi. J Sci Food Agric 88:1208–1216CrossRefGoogle Scholar
  67. Sabannavar SJ, Lakshman HC (2009) Effect of rock phosphate solubilization using mycorrhizal fungi and phosphobacteria on two high yielding varieties of Sesamum indicum L. World J Agric Sci 5(4):470–479Google Scholar
  68. Schulin R, Khoschgoftarmanesh A, Afyuni M, Nowack B, Frossard E (2009) Effects of soil management on zinc uptake and its bioavailability in plants. In: Banuelos GS, Lin ZQ (eds) Development and use of biofortified agricultural products. CRC , Boca Raton, pp 95–114Google Scholar
  69. Senthilkumar M, Ganesh S, Srinivas K, Panneerselvam P (2014) Enhancing uptake of secondary and micronutrients in banana Cv. Robusta (AAA) through intervention of fertigation and consortium of biofertilizers. Sch Acad J Biosci 2(8):472–478Google Scholar
  70. Sharma A, Johri BN, Sharma AK, Glick BR (2003) Plant growth-promoting bacterium Pseudomonas sp. strain GRP3 influences iron acquisition in mung bean (Vigna radiate L. Wilzeck). Soil Biol Biochem 35:887–894CrossRefGoogle Scholar
  71. Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystems scales. Annu Rev Plant Biol 63:227–250CrossRefGoogle Scholar
  72. Smith KP, Handelsman J, Goodman RM (1999) Genetic basis in plants for interactions with disease- suppressive bacteria. Proc Natl Acad Sci U S A 96:4786–4790CrossRefPubMedPubMedCentralGoogle Scholar
  73. Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol 162:511–524CrossRefGoogle Scholar
  74. Solanki AS, Kumar V, Sharma S (2011) AM fungi, A. chroococcum, yield, nutrient uptake and economics of Chlorophytum borivillianum in Indian arid region. J Agric Technol 7(4):983–991Google Scholar
  75. Song WY, Park J, Mendoza-Cozatl D, Suter-Grotemeyer M, Shim D, Hortensteiner S, Geisler M, Weder B, Rea P, Rentsch D, Schroder J, Lee Y, Martinoia E (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci U S A 107:21187–21192CrossRefPubMedPubMedCentralGoogle Scholar
  76. Tariq M, Hameed S, Malik KA, Hafeez FY (2007) Plant root associated bacteria for zinc mobilization in rice. Pak J Bot 39:245–253Google Scholar
  77. Vaid SK, Kumar B, Sharma A, Shukla AK, Srivastava PC (2014) Effect of Zn solubilizing bacteria on growth promotion and Zn nutrition of rice. J Soil Sci Plant Nutri 14(4):889–910Google Scholar
  78. Vert G, Grotz N, Dedaldechamp F, Gaymard F, Guerinot M, Briat J, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14:1223–1233CrossRefPubMedPubMedCentralGoogle Scholar
  79. Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364CrossRefPubMedGoogle Scholar
  80. Wu CC (2006) The cadmium transport sites of CadA, the Cd2+-ATPase from Listeria monocytogenes. J Biol Chem 281:29533–29541CrossRefPubMedGoogle Scholar
  81. Yang C-H, Crowley DE (2000) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol 66:345–351CrossRefPubMedPubMedCentralGoogle Scholar
  82. Yang CH, Crowley DE, Menge JA (2001) 16S rDNA fingerprinting of rhizosphere bacterial communities associated with healthy and Phytophthora infected avocado roots. FEMS Microbiol Ecol 35:129–136CrossRefPubMedGoogle Scholar
  83. Yazdani M, Bahmanyar MA, Pirdashti H, Esmaili MA (2009) Effect of phosphate solubilization microorganisms (PSM) and plant growth promoting rhizobacteria (PGPR) on yield and yield components of corn (Zea mays L.). Proc World Sci Eng Technol 37:90–92Google Scholar
  84. Yildirim E, Karlidag H, Turan M, Dursun A, Goktepe F (2011) Growth, nutrient uptake, and yield promotion of broccoli by plant growth promoting rhizobacteria with manure. Hort Sci 46(6):932–936Google Scholar
  85. Yoneyama K, Xie X, Sekimoto H, Takeuchi Y, Ogasawara S, Akiyama K, Hayashi H, Yoneyama K (2008) Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants. New Phytol 179:484–494CrossRefPubMedGoogle Scholar
  86. Yu Q, Renegal Z (1999) Micronutrient deficiency influences plant growth and activities of superoxide dismutases in narrow leafed Lupins. Ann Bot 83:175–182CrossRefGoogle Scholar
  87. Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Vivek Kumar
    • 1
    Email author
  • Manoj Kumar
    • 1
  • Neeraj Shrivastava
    • 1
  • Sandeep Bisht
    • 2
  • Shivesh Sharma
    • 3
  • Ajit Varma
    • 1
  1. 1.Amity Institute of Microbial TechnologyAmity UniversityNoidaIndia
  2. 2.Department of Molecular Biology and Biotechnology, VCSG College of Horticulture and ForestryUttarakhand University of Horticulture and ForestryBharsarIndia
  3. 3.Department of BiotechnologyMLN National Institute of TechnologyAllahabadIndia

Personalised recommendations