2 Ecological Biogeography of Lichen-Forming Fungi

Chapter
Part of the The Mycota book series (MYCOTA, volume IV)

Abstract

There has been a long-standing interest in understanding geographical distributions of lichen-forming fungi and the factors that shape these distributions. Given our limited ability to make generalizable inferences and predictions on species distributions within a historical biogeographic framework, we emphasize that a more effective incorporation of an ecological biogeographic perspective into biogeographic research of lichen-forming fungi will provide an improved understanding of the range of factors shaping distributions of species. In this chapter, we briefly discuss general perspectives of biogeography of lichen-forming fungi, followed by a synthesis of four major themes directly related to ecological biogeography, including (1) dispersal and establishment of lichens, (2) landscape genetics and gene flow, (3) modeling lichen distributions, and (4) the role photobionts play in determining distributional ranges. We conclude by discussing the role of ecological biogeography in conservation and climate change research.

References

  1. Amo de Paz G, Cubas P, Divakar PK, Lumbsch HT, Crespo A (2011) Origin and diversification of major clades in parmelioid lichens (Parmeliaceae, Ascomycota) during the Paleogene inferred by Bayesian analysis. PLoS One 6(12), e28161. doi: 10.1371/journal.pone.0028161 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Amo de Paz G, Cubas P, Crespo A, Elix JA, Lumbsch HT (2012) Transoceanic dispersal and subsequent diversification on separate continents shaped diversity of the Xanthoparmelia pulla group (Ascomycota). PLoS One 7(6), e39683. doi: 10.1371/journal.pone.0039683 PubMedCrossRefGoogle Scholar
  3. Anderson RP, Lew D, Peterson AT (2003) Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecol Model 162(3):211–232. doi: 10.1016/S0304-3800(02)00349-6 CrossRefGoogle Scholar
  4. Antoine ME, McCune B (2004) Contrasting fundamental and realized ecological niches with epiphytic lichen transplants in an old-growth Pseudotsuga forest. The Bryologist 107(2):163–172. doi: 10.1639/0007-2745(2004)107[0163:CFAREN]2.0.CO;2 CrossRefGoogle Scholar
  5. Aptroot A, Berg MP (2004) Collembola help lichens in competition with algae. The Lichenologist 36(02):167–169. doi: 10.1017/S0024282904014082 CrossRefGoogle Scholar
  6. Araújo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. J Biogeogr 33(10):1677–1688. doi: 10.1111/j.1365-2699.2006.01584.x CrossRefGoogle Scholar
  7. Araújo MB, Rahbek C (2006) How does climate change affect biodiversity? Science 313(5792):1396–1397. doi: 10.1126/science.1131758 PubMedCrossRefGoogle Scholar
  8. Argüello A, Del Prado R, Cubas P, Crespo A (2007) Parmelina quercina (Parmeliaceae, Lecanorales) includes four phylogenetically supported morphospecies. Biol J Linn Soc 91(3):455–467CrossRefGoogle Scholar
  9. Armstrong RA (1981) Field experiments on the dispersal, establishment and colonization of lichens on a slate rock surface. Environ Exp Bot 21(1):115–120. doi: 10.1016/0098-8472(81)90016-2 CrossRefGoogle Scholar
  10. Armstrong RA (1987) Dispersal in a population of the lichen Hypogymnia physodes. Environ Exp Bot 27:357–363CrossRefGoogle Scholar
  11. Armstrong RA (1994) Dispersal of soredia from individual soralia of the lichen Hypogymnia physodes (L.) Nyl. in a simple wind tunnel. Environ Exp Bot 34(1):39–45. doi: 10.1016/0098-8472(94)90007-8 CrossRefGoogle Scholar
  12. Arnerup J, Hogberg N, Thor G (2004) Phylogenetic analysis of multiple loci reveal the population structure within Letharia in the Caucasus and Morocco. Mycol Res 108:311–316PubMedCrossRefGoogle Scholar
  13. Aschenbrenner IA, Cardinale M, Berg G, Grube M (2014) Microbial cargo: do bacteria on symbiotic propagules reinforce the microbiome of lichens? Environ Microbiol 16(12):3743–3752. doi: 10.1111/1462-2920.12658 PubMedCrossRefGoogle Scholar
  14. Bailey RH (1966) Studies on the dispersal of lichen soredia. J Linnean Soc Lond Bot 59(380):479–490. doi: 10.1111/j.1095-8339.1966.tb00074.x CrossRefGoogle Scholar
  15. Bailey RH (1970) Animals and the dispersal of soredia from Lecanora conizaeoides Nyl. ex Cromb. The Lichenologist 4:256CrossRefGoogle Scholar
  16. Bailey RH, James PW (1979) Birds and the dispersal of lichen propagules. The Lichenologist 11(01):105–106. doi: 10.1017/S0024282979000141 CrossRefGoogle Scholar
  17. Bendiksby M, Mazzoni S, Jørgensen MH, Halvorsen R, Holien H (2014) Combining genetic analyses of archived specimens with distribution modelling to explain the anomalous distribution of the rare lichen Staurolemma omphalarioides: long-distance dispersal or vicariance? J Biogeogr 41(11):2020–2031. doi: 10.1111/jbi.12347 CrossRefGoogle Scholar
  18. Bjelland T (2003) The influence of environmental factors on the spatial distribution of saxicolous lichens in a Norwegian coastal community. J Veg Sci 14(4):525–534. doi: 10.1111/j.1654-1103.2003.tb02179.x CrossRefGoogle Scholar
  19. Bjerke JW (2011) Winter climate change: ice encapsulation at mild subfreezing temperatures kills freeze-tolerant lichens. Environ Exp Bot 72(3):404–408. doi: 10.1016/j.envexpbot.2010.05.014 CrossRefGoogle Scholar
  20. Blaha J, Baloch E, Grube M (2006) High photobiont diversity associated with the euryoecious lichen-forming ascomycete Lecanora rupicola (Lecanoraceae, Ascomycota). Biol J Linn Soc 88(2):283–293. doi: 10.1111/j.1095-8312.2006.00640.x CrossRefGoogle Scholar
  21. Boch S, Prati D, Werth S, Rüetschi J, Fischer M (2011) Lichen endozoochory by snails. PLoS One 6(4), e18770. doi: 10.1371/journal.pone.0018770 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bollinger J, Bergamini A, Stofer S, Kienast F, Scheidegger C (2007) Predicting the potential spatial distributions of epiphytic lichen species at the landscape scale. The Lichenologist 39(03):279–291. doi: 10.1017/S0024282907006652 CrossRefGoogle Scholar
  23. Bölter M, Kappen L, Meyer M (1989) The influence of microclimatic conditions on potential photosynthesis of Usnea sphacelata: A model. Ecol Res 4(3):297–307. doi: 10.1007/BF02348450 CrossRefGoogle Scholar
  24. Bonada N, Zamora-Muñoz C, Rieradevall M, Prat N (2005) Ecological and historical filters constraining spatial caddisfly distribution in Mediterranean rivers. Freshw Biol 50(5):781–797. doi: 10.1111/j.1365-2427.2005.01357.x CrossRefGoogle Scholar
  25. Bowker MA, Miller ME, Belnap J, Sisk TD, Johnson NC (2008) Prioritizing conservation effort through the use of biological soil crusts as ecosystem function indicators in an arid region. Conserv Biol 22(6):1533–1543. doi: 10.1111/j.1523-1739.2008.01036.x PubMedCrossRefGoogle Scholar
  26. Bowler PA, Rundel PW (1975) Reproductive strategies in lichens. Bot J Linnean Soc 70(4):325–340. doi: 10.1111/j.1095-8339.1975.tb01653.x CrossRefGoogle Scholar
  27. Braidwood D, Ellis CJ (2012) Bioclimatic equilibrium for lichen distributions on disjunct continental landmasses. Botany 90(12):1316–1325. doi: 10.1139/b2012-103 CrossRefGoogle Scholar
  28. Buschbom J (2007) Migration between continents: geographical structure and long-distance gene flow in Porpidia flavicunda (lichen-forming Ascomycota). Mol Ecol 12:957–968Google Scholar
  29. Campbell LM (2005) Overcoming obstacles to interdisciplinary research. Conserv Biol 19(2):574–577. doi: 10.1111/j.1523-1739.2005.00058.x CrossRefGoogle Scholar
  30. Casanovas P, Lynch HJ, Fagan WF (2013) Multi-scale patterns of moss and lichen richness on the Antarctic Peninsula. Ecography 36(2):209–219. doi: 10.1111/j.1600-0587.2012.07549.x CrossRefGoogle Scholar
  31. Chan LM, Brown JL, Yoder AD (2011) Integrating statistical genetic and geospatial methods brings new power to phylogeography. Mol Phylogenet Evol 59(2):523–537. doi: 10.1016/j.ympev.2011.01.020 PubMedCrossRefGoogle Scholar
  32. Cornelissen JHC, Callaghan TV, Alatalo JM, Michelsen A, Graglia E, Hartley AE, Hik DS, Hobbie SE, Press MC, Robinson CH, Henry GHR, Shaver GR, Phoneix GK, Jones DG, Jonasson S, Iii FSC, Molau U, Neill C, Lee JA, Melillo JM, Sveinbjörnsson B, Aerts R (2001) Global change and Arctic ecosystems: is lichen decline a function of increases in Vascular Plant Biomass? J Ecol 89(6):984–994CrossRefGoogle Scholar
  33. Coulston JW, Smith GC, Smith WD (2003) Regional assessment of ozone sensitive tree species using bioindicator plants. Environ Monit Assess 83(2):113–127. doi: 10.1023/A:1022578506736 PubMedCrossRefGoogle Scholar
  34. Coxson DS, Coyle M (2003) Niche partitioning and photosynthetic response of alectorioid lichens from subalpine spruce?fir forest in north-central British Columbia, Canada: the role of canopy microclimate gradients. The Lichenologist 35(02):157–175. doi: 10.1016/S0024-2829(03)00018-5 CrossRefGoogle Scholar
  35. Crespo A, Lumbsch HT (2010) Cryptic species in lichen-forming fungi. IMA Fungus 1:167–170PubMedPubMedCentralCrossRefGoogle Scholar
  36. Crespo A, Pérez-Ortega S (2009) Cryptic species and species pairs in lichens: a discussion on the relationship between molecular phylogenies and morphological characters. Anales del Jardin Botanico de Madrid 66(S1):71–81CrossRefGoogle Scholar
  37. Crespo A, Ferencova Z, Pérez-Ortega S, Argüello A, Elix JA, Divakar PK (2010a) Austroparmelina, a new Austalasian lineage in parmelioid lichens (Parmeliaceae, Ascomycota): a multigene and morphological approach. Syst Biodiver 8:209–221CrossRefGoogle Scholar
  38. Crespo A, Kauff F, Divakar PK, del Prado R, Perez-Ortega S, Amo de Paz G, Ferencova Z, Blanco O, Roca-Valiente B, Nunez-Zapata J, Cubas P, Arguello A, Elix JA, Esslinger TL, Hawksworth DL, Millanes A, Molina MC, Wedin M, Ahti T, Aptroot A et al (2010b) Phylogenetic generic classification of parmelioid lichens (Parmeliaceae, Ascomycota) based on molecular, morphological and chemical evidence. Taxon 59(6):1735–1753Google Scholar
  39. Culberson WL (1972) Disjunctive distributions in the lichen-forming fungi. Ann Mo Bot Gard 59(2):165–173CrossRefGoogle Scholar
  40. Culberson WL, Culberson CF (1967) Habitat selection by chemically differentiated races of lichens. Science 158(3805):1195–1197PubMedCrossRefGoogle Scholar
  41. Dahlkild Å, Källersjö M, Lohtander K, Tehler A (2001) Photobiont diversity in the Physciaceae (Lecanorales). The Bryologist 104(4):527–536CrossRefGoogle Scholar
  42. Dal Grande F, Widmer I, Wagner HH, Scheidegger C (2012) Vertical and horizontal photobiont transmission within populations of a lichen symbiosis. Mol Ecol 21(13):3159–3172. doi: 10.1111/j.1365-294X.2012.05482.x PubMedCrossRefGoogle Scholar
  43. del Campo EM, Catalá S, Gimeno J, del Hoyo A, Martínez-Alberola F, Casano LM, Grube M, Barreno E (2013) The genetic structure of the cosmopolitan three-partner lichen Ramalina farinacea evidences the concerted diversification of symbionts. FEMS Microbiol Ecol 83(2):310–323. doi: 10.1111/j.1574-6941.2012.01474.x PubMedCrossRefGoogle Scholar
  44. Del-Prado R, Blanco O, Lumbsch HT, Divakar PK, Elix JA, Molina MC, Crespo A (2013) Molecular phylogeny and historical biogeography of the lichen-forming fungal genus Flavoparmelia (Ascomycota: Parmeliaceae). Taxon 62(5):928–939. doi: 10.12705/625.22 CrossRefGoogle Scholar
  45. Divakar PK, Del-Prado R, Lumbsch HT, Wedin M, Esslinger TL, Leavitt SD, Crespo A (2012) Diversification of the newly recognized lichen-forming fungal lineage Montanelia (Parmeliaceae, Ascomycota) and its relation to key geological and climatic events. Am J Bot 99(12):2014–2026. doi: 10.3732/ajb.1200258 PubMedCrossRefGoogle Scholar
  46. Du Rietz GE (1940) Problems of bipolar plant distribution. Acta Phytogeographica Suecica 13(215-282)Google Scholar
  47. Eaton S, Ellis CJ (2012) Local experimental growth rates respond to macroclimate for the lichen epiphyte Lobaria pulmonaria. Plant Ecol Diver 5(3):365–372. doi: 10.1080/17550874.2012.728640 CrossRefGoogle Scholar
  48. Edwards TC, Cutler DR, Zimmermann NE, Geiser L, Alegria J (2005) Model-based stratifications for enhancing the detection of rare ecological events. Ecology 86(5):1081–1090. doi: 10.1890/04-0608 CrossRefGoogle Scholar
  49. Edwards TC, Cutler DR, Zimmermann NE, Geiser L, Moisen GG (2006) Effects of sample survey design on the accuracy of classification tree models in species distribution models. Ecol Model 199(2):132–141. doi: 10.1016/j.ecolmodel.2006.05.016 CrossRefGoogle Scholar
  50. Ekblom R, Galindo J (2011) Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity 107(1):1–15PubMedPubMedCentralCrossRefGoogle Scholar
  51. Elix JA, Corush J, Lumbsch HT (2009) Triterpene chemosyndromes and subtle morphological characters characterise lineages in the Physcia aipolia group in Australia (Ascomycota). Syst Biodiver 7(04):479–487. doi: 10.1017/S1477200009990223 CrossRefGoogle Scholar
  52. Ellis CJ, Coppins BJ, Dawson TP (2007a) Predicted response of the lichen epiphyte Lecanora populicola to climate change scenarios in a clean-air region of Northern Britain. Biol Conserv 135(3):396–404. doi: 10.1016/j.biocon.2006.10.036 CrossRefGoogle Scholar
  53. Ellis CJ, Coppins BJ, Dawson TP, Seaward MRD (2007b) Response of British lichens to climate change scenarios: Trends and uncertainties in the projected impact for contrasting biogeographic groups. Biol Conserv 140(3–4):217–235. doi: 10.1016/j.biocon.2007.08.016 CrossRefGoogle Scholar
  54. Ellis CJ, Eaton S, Theodoropoulos M, Coppins BJ, Seaward MRD, Simkin J (2014) Response of epiphytic lichens to 21st Century climate change and tree disease scenarios. Biol Conserv 180:153–164. doi: 10.1016/j.biocon.2014.09.046 CrossRefGoogle Scholar
  55. Ernakovich JG, Hopping KA, Berdanier AB, Simpson RT, Kachergis EJ, Steltzer H, Wallenstein MD (2014) Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change. Glob Chang Biol 20(10):3256–3269. doi: 10.1111/gcb.12568 PubMedCrossRefGoogle Scholar
  56. Evju M, Bruteig IE (2013) Lichen community change over a 15-year time period: effects of climate and pollution. The Lichenologist 45(01):35–50CrossRefGoogle Scholar
  57. Färber L, Solhaug KA, Esseen P-A, Bilger W, Gauslaa Y (2014) Sunscreening fungal pigments influence the vertical gradient of pendulous lichens in boreal forest canopies. Ecology 95(6):1464–1471. doi: 10.1890/13-2319.1 PubMedCrossRefGoogle Scholar
  58. Favero-Longo SE, Sandrone S, Matteucci E, Appolonia L, Piervittori R (2014) Spores of lichen-forming fungi in the mycoaerosol and their relationships with climate factors. Sci Total Environ 466–467:26–33. doi: 10.1016/j.scitotenv.2013.06.057 PubMedCrossRefGoogle Scholar
  59. Fernández-Mendoza F, Printzen C (2013) Pleistocene expansion of the bipolar lichen Cetraria aculeata into the Southern hemisphere. Mol Ecol 22(7):1961–1983. doi: 10.1111/mec.12210 PubMedCrossRefGoogle Scholar
  60. Fernández-Mendoza F, Domaschke S, García MA, Jordan P, Martin MP, Printzen C (2011) Population structure of mycobionts and photobionts of the widespread lichen Cetraria aculeata. Mol Ecol 20(6):1208–1232. doi: 10.1111/j.1365-294X.2010.04993.x PubMedCrossRefGoogle Scholar
  61. Frego KA (2007) Bryophytes as potential indicators of forest integrity. For Ecol Manage 242(1):65–75. doi: 10.1016/j.foreco.2007.01.030 CrossRefGoogle Scholar
  62. Friedl T (1987) Thallus development and phycobionts of the parasitic lichen Diploschistes muscorum. The Lichenologist 19:183–191CrossRefGoogle Scholar
  63. Galloway DJ (1988) Plate tectonics and the distribution of cool temperate Southern Hemisphere macrolichens. Bot J Linnean Soc 96(1):45–55. doi: 10.1111/j.1095-8339.1988.tb00626.x CrossRefGoogle Scholar
  64. Galloway DJ (2008) Lichen biogeography. In: Nash THI (ed) Lichen biology, 2nd edn. Cambridge University Press, New York, NY, pp 315–335CrossRefGoogle Scholar
  65. Galloway D, Aptroot A (1995) Bipolar lichens: a review. Cryptogamic Bot 5:184–191Google Scholar
  66. Gauslaa Y (2014) Rain, dew, and humid air as drivers of morphology, function and spatial distribution in epiphytic lichens. The Lichenologist 46(01):1–16. doi: 10.1017/S0024282913000753 CrossRefGoogle Scholar
  67. Geml J, Kauff F, Brochmann C, Taylor DL (2010) Surviving climate changes: high genetic diversity and transoceanic gene flow in two arctic–alpine lichens, Flavocetraria cucullata and F. nivalis (Parmeliaceae, Ascomycota). J Biogeogr 37(8):1529–1542. doi: 10.1111/j.1365-2699.2010.02287.x Google Scholar
  68. Giordani P, Incerti G (2008) The influence of climate on the distribution of lichens: a case study in a borderline area (Liguria, Nw Italy). Plant Ecol 195(2):257–272. doi: 10.2307/40305467 CrossRefGoogle Scholar
  69. Giordani P, Incerti G, Rizzi G, Ginaldi F, Viglione S, Rellini I, Brunialti G, Malaspina P (2010) Land use intensity drives the local variation of lichen diversity in Mediterranean ecosystems sensitive to desertification. Bibliotheca Lichenologica 105:139–148Google Scholar
  70. Gjerde I, Blom HH, Heegaard E, Sætersdal M (2014) Lichen colonization patterns show minor effects of dispersal distance at landscape scale. Ecography 38:939–948. doi: 10.1111/ecog.01047 CrossRefGoogle Scholar
  71. Glavich DA, Geiser LH, Mikulin AG (2005) Rare epiphytic coastal lichen habitats, modeling, and management in the Pacific Northwest. The Bryologist 108(3):377–390CrossRefGoogle Scholar
  72. Hale ME (1990) A synopsis of the lichen genus Xanthoparmelia (Vainio) Hale (Ascomycotina, Parmeliaceae). Smithsonian Institution Press, Washington, DCGoogle Scholar
  73. Hauck M, Dulamsuren C, Mühlenberg M (2007) Lichen diversity on steppe slopes in the northern Mongolian mountain taiga and its dependence on microclimate. Flora 202(7):530–546. doi: 10.1016/j.flora.2006.11.003 CrossRefGoogle Scholar
  74. Hawksworth DL (1982) Secondary fungi in lichen symbioses: parasites saprophytes and parasymbionts. J Hattori Bot Lab 52:357–366Google Scholar
  75. Heinken T (1999) Dispersal patterns of terricolous lichens by thallus fragments. The Lichenologist 31(06):603–612. doi: 10.1017/S0024282999000791 CrossRefGoogle Scholar
  76. Hilmo O, Rocha L, Holien H, Gauslaa Y (2011) Establishment success of lichen diaspores in young and old boreal rainforests: a comparison between Lobaria pulmonaria and L. scrobiculata. The Lichenologist 43(03):241–255. doi: 10.1017/S0024282910000794 CrossRefGoogle Scholar
  77. Hilmo O, Lundemo S, Holien H, Stengrundet K, StenØIen HK (2012) Genetic structure in a fragmented Northern Hemisphere rainforest: large effective sizes and high connectivity among populations of the epiphytic lichen Lobaria pulmonaria. Mol Ecol 21(13):3250–3265. doi: 10.1111/j.1365-294X.2012.05605.x PubMedCrossRefGoogle Scholar
  78. Hodkinson ID, Jackson JK (2005) Terrestrial and aquatic invertebrates as bioindicators for environmental monitoring, with particular reference to mountain ecosystems. Environ Manage 35(5):649–666. doi: 10.1007/s00267-004-0211-x PubMedCrossRefGoogle Scholar
  79. Högberg N, Kroken S, Thor G, Taylor JW (2002) Reproductive mode and genetic variation suggest a North American origin of European Letharia vulpina. Mol Ecol 11(7):1191–1196PubMedCrossRefGoogle Scholar
  80. Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography (MPB-32), vol 32. Princeton University Press, Princeton, NJGoogle Scholar
  81. Jackson HB, Fahrig L (2014) Are ecologists conducting research at the optimal scale? Glob Ecol Biogeogr 24(1):52–63. doi: 10.1111/geb.12233 CrossRefGoogle Scholar
  82. Jahns HM, Tuiz-Dubiel A, Blank L (1976) Hygroskopische bewegungen der sorale von Hypogymnia physodes. Herzogia 4:15–23Google Scholar
  83. Johansson V, Ranius T, Snäll T (2012) Epiphyte metapopulation dynamics are explained by species traits, connectivity, and patch dynamics. Ecology 93(2):235–241. doi: 10.1890/11-0760.1 PubMedCrossRefGoogle Scholar
  84. Jüriado I, Liira J, Csencsics D, Widmer I, Adolf C, Kohv K, Scheidegger C (2011) Dispersal ecology of the endangered woodland lichen Lobaria pulmonaria in managed hemiboreal forest landscape. Biodivers Conserv 20(8):1803–1819. doi: 10.1007/s10531-011-0062-8 CrossRefGoogle Scholar
  85. Kantvilas G, Minchin P (1989) An analysis of epiphytic lichen communities in Tasmanian cool temperate rainforest. Vegetatio 84(2):99–112. doi: 10.1007/BF00036510 CrossRefGoogle Scholar
  86. Kraichak E, Divakar PK, Crespo A, Leavitt SD, Nelsen MP, Lücking R, Lumbsch HT (2015) A tale of two hyper-diversities: diversification dynamics of the two largest families of lichenized fungi. Sci Rep 5:10028. doi: 10.1038/srep10028 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Kroken S, Taylor JW (2000) Phylogenetic species, reproductive mode, and specificity of the green alga Trebouxia forming lichens with the fungal genus Letharia. The Bryologist 103(4):645–660CrossRefGoogle Scholar
  88. Lättman H, Lindblom L, Mattsson J-E, Milberg P, Skage M, Ekman S (2009) Estimating the dispersal capacity of the rare lichen Cliostomum corrugatum. Biol Conserv 142(8):1870–1878. doi: 10.1016/j.biocon.2009.03.026 CrossRefGoogle Scholar
  89. Leavitt SD, St. Clair LL (2015) Bio-monitoring in Western North America: what can lichens tell us about ecological disturbances? In: Upreti DK, Divakar PK, Shukla V, Bajpai R (eds) Recent advances in lichenology. Springer India, New Delhi, pp 119–138. doi: 10.1007/978-81-322-2181-4_5 Google Scholar
  90. Leavitt SD, Fankhauser JD, Leavitt DH, Porter LD, Johnson LA, St. Clair LL (2011) Complex patterns of speciation in cosmopolitan “rock posy” lichens – Discovering and delimiting cryptic fungal species in the lichen-forming Rhizoplaca melanophthalma species-complex (Lecanoraceae, Ascomycota). Mol Phylogenet Evol 59(3):587–602. doi: 10.1016/j.ympev.2011.03.020 PubMedCrossRefGoogle Scholar
  91. Leavitt SD, Esslinger TL, Divakar PK, Lumbsch HT (2012) Miocene divergence, phenotypically cryptic lineages, and contrasting distribution patterns in common lichen-forming fungi (Ascomycota: Parmeliaceae). Biol J Linn Soc 1007:920–937CrossRefGoogle Scholar
  92. Leavitt SD, Esslinger TL, Spribille T, Divakar PK, Lumbsch HT (2013a) Multilocus phylogeny of the lichen-forming fungal genus Melanohalea (Parmeliaceae, Ascomycota): insights on diversity, distributions, and a comparison of species tree and concatenated topologies. Mol Phylogenet Evol 66:138–152. doi: 10.1016/j.ympev.2012.09.013 PubMedCrossRefGoogle Scholar
  93. Leavitt SD, Fernández-Mendoza F, Pérez-Ortega S, Sohrabi M, Divakar PK, Vondrák J, Thorsten Lumbsch H, Clair LLS (2013b) Local representation of global diversity in a cosmopolitan lichen-forming fungal species complex (Rhizoplaca, Ascomycota). J Biogeogr 40(9):1792–1806. doi: 10.1111/jbi.12118 CrossRefGoogle Scholar
  94. Leavitt SD, Moreau CS, Lumbsch HT (2015a) The dynamic discipline of species delimitation: progress toward effectively recognizing species boundaries in natural populations. In: Upreti DK, Divakar PK, Shukla V, Bajpai R (eds) Recent advances in lichenology. Springer India, New Delhi, pp 11–44. doi: 10.1007/978-81-322-2235-4_2 CrossRefGoogle Scholar
  95. Leavitt SD, Kraichak E, Nelsen MP, Altermann S, Divakar PK, Alors D, Esslinger TL, Crespo A, Lumbsch HT (2015b) Fungal specificity and selectivity for algae play a major role in determining lichen partnerships across diverse ecogeographic regions in the lichen‐forming family Parmeliaceae (Ascomycota). Mol Ecol 24(14):3779–3797. doi: 10.1111/mec.13271 PubMedCrossRefGoogle Scholar
  96. Lechowicz MJ, Jordan WP, Adams MS (1974) Ecology of Cladonia lichens. III. Comparison of C. caroliniana, endemic to southeastern North America, with three northern Cladonia species. Can J Bot 52(3):565–573. doi: 10.1139/b74-072 CrossRefGoogle Scholar
  97. Lewis LR, Behling E, Gousse H, Qian E, Elphick CS, Lamarre J-F, Bêty J, Liebezeit J, Rozzi R, Goffinet B (2014) First evidence of bryophyte diaspores in the plumage of transequatorial migrant birds. PeerJ 2, e424. doi: 10.7717/peerj.424 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Lidén M, Hilmo O (2005) Population characteristics of the suboceanic lichen Platismatia norvegica in core and fringe habitats: relations to macroclimate, substrate, and proximity to streams. The Bryologist 108(4):506–517CrossRefGoogle Scholar
  99. Lindblom L, Ekman S (2006) Genetic variation and population differentiation in the lichen-forming ascomycete Xanthoria parietina on the island Storfosna, central Norway. Mol Ecol 15(6):1545–1559PubMedCrossRefGoogle Scholar
  100. Lindblom L, Søchting U (2008) Taxonomic revision of Xanthomendoza borealis and Xanthoria mawsonii (Lecanoromycetes, Ascomycota). The Lichenologist 40(05):399–409. doi: 10.1017/S0024282908007937 CrossRefGoogle Scholar
  101. Lira-Noriega A, Toro-Núñez O, Oaks JR, Mort ME (2015) The roles of history and ecology in chloroplast phylogeographic patterns of the bird-dispersed plant parasite Phoradendron californicum (Viscaceae) in the Sonoran Desert. Am J Bot 102(1):149–164. doi: 10.3732/ajb.1400277 PubMedCrossRefGoogle Scholar
  102. Lomolino MV, Riddle BR, Brown JH, Whittaker RJ (2006) Biogeography. Sinauer Associates, Sunderland, MAGoogle Scholar
  103. Lorentsson S, Mattsson J-E (1999) New reports of soredia dispersed by ants, Formica cunicularia. The Lichenologist 31(02):204–207. doi: 10.1017/S0024282999000262 Google Scholar
  104. Lücking R, Tehler A, Bungartz F, Rivas Plata E, Lumbsch HT (2013) Journey from the West: did tropical Graphidaceae (lichenized Ascomycota: Ostropales) evolve from a saxicolous ancestor along the American Pacific coast? Am J Bot 100(5):844–856. doi: 10.3732/ajb.1200548 PubMedCrossRefGoogle Scholar
  105. Lücking R, Dal-Forno M, Sikaroodi M, Gillevet PM, Bungartz F, Moncada B, Yánez-Ayabaca A, Chaves JL, Coca LF, Lawrey JD (2014) A single macrolichen constitutes hundreds of unrecognized species. Proc Natl Acad Sci 111(30):11091–11096. doi: 10.1073/pnas.1403517111 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Lumbsch HT, Leavitt SD (2011) Goodbye morphology? A paradigm shift in the delimitation of species in lichenized fungi. Fungal Diver 50(1):59–72. doi: 10.1007/s13225-011-0123-z CrossRefGoogle Scholar
  107. Lumbsch HT, Ahti T, Altermann S, Amo de Paz G, Aptroot A, Arup U, Barcenas Peña A, Bawingan PA, Benatti MN, Betancourt L, Björk CR, Boonpragob K, Brand M, Bungartz F, Caceres MES, Candan M, Chaves JL, Clerc P, Common R, Coppins BJ, Crespo A, Dal Forno M, Divakar PK, Duya MV, Elix JA, Elvebakk A, Fankhauser J, Farkas E, Ferraro LI, Fischer E, Galloway DJ, Gaya E, Giralt M, Goward T, Grube M, Hafellner J, Hernandez JE, Herrera-Campos MA, Kalb K, Kärnefelt I, Kantvilas G, Killmann D, Kirika P, Knudesn K, Komposch H, Kondratyuk S, Lawrey JD, Mangold A, Marcelli MP, McCune BP, Michlig A, Miranda Gonzalez R, Moncada B, Naikatini A, Nelsen MP, Øvstedal DO, Palice Z, Papong K, Parnmen S, Pérez-Ortega S, Printzen C, Rico VJ, Rivas Plata E, Robayo J, Rosabal D, Ruprecht U, Salazar Allen N, Sancho L, Santos de Jesus L, Santos Vieira T, Schultz M, Seaward MRD, Sérusiaux E, Schmitt I, Sipman HJM, Sohrabi M, Søchting U, Søgaard MZ, Sparrius LB, Spielmann A, Spribille T, Sutjaritturakan J, Thammathaworn A, Thell A, Thor G, Thüs H, Timdal E, Truong C, Türk R, Umaña Tenorio L, Upreti D, van den Boom P, Vivas Rebuelta M, Wedin M, Will-Wolf S, Wirth V, Wirtz N, Yahr R, Yeshitela K, Ziemmeck F, Wheeler T, Lücking R (2011) One hundred new species of lichenized fungi: a signature of undiscovered global diversity. Phytotaxa 18:1–127CrossRefGoogle Scholar
  108. Maestre FT, Escolar C, Martínez I, Escudero A (2008) Are soil lichen communities structured by biotic interactions? A null model analysis. J Veg Sci 19(2):261–266. doi: 10.3170/2007-8-18366 CrossRefGoogle Scholar
  109. Manel S, Holderegger R (2013) Ten years of landscape genetics. Trends Ecol Evol 28(10):614–621. doi: 10.1016/j.tree.2013.05.012 PubMedCrossRefGoogle Scholar
  110. Marini L, Nascimbene J, Nimis PL (2011) Large-scale patterns of epiphytic lichen species richness: photobiont-dependent response to climate and forest structure. Sci Total Environ 409(20):4381–4386. doi: 10.1016/j.scitotenv.2011.07.010 PubMedCrossRefGoogle Scholar
  111. Marshall WA (1996) Aerial dispersal of lichen soredia in the maritime Antarctic. New Phytologist 134(3):523–530. doi: 10.1111/j.1469-8137.1996.tb04370.x CrossRefGoogle Scholar
  112. Martellos S, Attorre F, Farcomeni A, Francesconi F, Pittao E, Tretiach M (2014) Species distribution models backing taxa delimitation: the case of the lichen Squamarina cartilaginea in Italy. Flora 209(12):698–703. doi: 10.1016/j.flora.2014.08.008 CrossRefGoogle Scholar
  113. Martínez I, Carreño F, Escudero A, Rubio A (2006) Are threatened lichen species well-protected in Spain? Effectiveness of a protected areas network. Biol Conserv 133(4):500–511. doi: 10.1016/j.biocon.2006.08.003 CrossRefGoogle Scholar
  114. McCarthy PM, Healy JA (1978) Dispersal of lichen propagules by slugs. The Lichenologist 10(01):131–132. doi: 10.1017/S002428297800016X CrossRefGoogle Scholar
  115. McCune B (2000) Lichen communities as indicators of forest health. The Bryologist 103(2):353–356CrossRefGoogle Scholar
  116. McCune B, Berryman SD, Cissel JH, Gitelman AI (2003) Use of a smoother to forecast occurrence of epiphytic lichens under alternative forest management plans. Ecol Appl 13(4):1110–1123. doi: 10.1890/1051-0761(2003)13[1110:UOASTF]2.0.CO;2 CrossRefGoogle Scholar
  117. Meier FA, Scherrer S, Honegger R (2002) Faecal pellets of lichenivorous mites contain viable cells of the lichen-forming ascomycete Xanthoria parietina and its green algal photobiont Trebouxia arboricola. Biol J Linn Soc 76:259–268CrossRefGoogle Scholar
  118. Miadlikowska J, Schoch CL, Kageyama SA, Molnar K, Lutzoni F, McCune B (2011) Hypogymnia phylogeny, including Cavernularia, reveals biogeographic structure. The Bryologist 114(2):392–400. doi: 10.1639/0007-2745-114.2.392 CrossRefGoogle Scholar
  119. Moberg R (2001) The lichen genus Physcia in Australia. Bibliotheca Lichenologica 78:289–311Google Scholar
  120. Monge-Nájera J (2008) Ecological biogeography: a review with emphasis on conservation and the neutral model. Gayana 72(1):102–112Google Scholar
  121. Myllys L, Stenroos S, Thell A, Ahti T (2003) Phylogeny of bipolar Cladonia arbuscula and Cladonia mitis (Lecanorales, Euascomycetes). Mol Phylogenet Evol 27(1):58–69PubMedCrossRefGoogle Scholar
  122. Nadyeina O, Dymytrova L, Naumovych A, Postoyalkin S, Werth S, Cheenacharoen S, Scheidegger C (2014) Microclimatic differentiation of gene pools in the Lobaria pulmonaria symbiosis in a primeval forest landscape. Mol Ecol 23(21):5164–5178. doi: 10.1111/mec.12928 PubMedCrossRefGoogle Scholar
  123. Nelsen MP, Gargas A (2009) Assessing clonality and chemotype monophyly in Thamnolia (Icmadophilaceae). The Bryologist 112(1):42–53. doi: 10.1639/0007-2745-112.1.42 CrossRefGoogle Scholar
  124. Nelson PR, McCune B, Roland C, Stehn S (2015) Non-parametric methods reveal non-linear functional trait variation of lichens along environmental and fire age gradients. J Veg Sci 26:848–865. doi: 10.1111/jvs.12286 CrossRefGoogle Scholar
  125. Otálora MAG, Martínez I, Aragón G, Molina MC (2010) Phylogeography and divergence date estimates of a lichen species complex with a disjunct distribution pattern. Am J Bot 97(2):216–223. doi: 10.3732/ajb.0900064 PubMedCrossRefGoogle Scholar
  126. Otte V, Esslinger TL, Litterski B (2005) Global distribution of the European species of the lichen genus Melanelia Essl. J Biogeogr 32(7):1221–1241. doi: 10.1111/j.1365-2699.2005.01268.x CrossRefGoogle Scholar
  127. Palmqvist K, Sundberg B (2000) Light use efficiency of dry matter gain in five macro-lichens: relative impact of microclimate conditions and species-specific traits. Plant Cell Environ 23(1):1–14. doi: 10.1046/j.1365-3040.2000.00529.x CrossRefGoogle Scholar
  128. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918):37–42, http://www.nature.com/nature/journal/v421/n6918/suppinfo/nature01286_S1.html PubMedCrossRefGoogle Scholar
  129. Peksa O, Škaloud P (2011) Do photobionts influence the ecology of lichens? A case study of environmental preferences in symbiotic green alga Asterochloris (Trebouxiophyceae). Mol Ecol 20(18):3936–3948. doi: 10.1111/j.1365-294X.2011.05168.x PubMedCrossRefGoogle Scholar
  130. Pelletier TA, Crisafulli C, Wagner S, Zellmer AJ, Carstens BC (2014) Historical species distribution models predict species limits in western Plethodon salamanders. Syst Biol 64(6):909–925. doi: 10.1093/sysbio/syu090 PubMedCrossRefGoogle Scholar
  131. Pérez-Ortega S, Fernández-Mendoza F, Raggio J, Vivas M, Ascaso C, Sancho LG, Printzen C, de los Ríos A (2012) Extreme phenotypic variation in Cetraria aculeata (lichenized Ascomycota): adaptation or incidental modification? Ann Bot 109(6):1133–1148. doi: 10.1093/aob/mcs042 PubMedPubMedCentralCrossRefGoogle Scholar
  132. Pesch R, Schroeder W (2006) Mosses as bioindicators for metal accumulation: statistical aggregation of measurement data to exposure indices. Ecol Indicators 6(1):137–152. doi: 10.1016/j.ecolind.2005.08.018 CrossRefGoogle Scholar
  133. Pickup J (1988) Ecophysiological studies of terrestrial free-living nematodes on Signy Island. Br Antarctic Surv Bull 81:77–81Google Scholar
  134. Poelt J (1956) Über parasitische flechten. Planta 46:467–480CrossRefGoogle Scholar
  135. Poelt J (1987) On reductions of morphological structures in lichens. In: Progress and problems in lichenologiy in the eighties. Bibliotheca Lichenologica No. 25. J. Cramer, Berlin, pp 35–45Google Scholar
  136. Poelt J (1990) Parasitische arten der flechtengattung Rhizocarpon: eine weitere Übersicht. Mitteilungen der Botanische Staatssammlung München 29:515–538Google Scholar
  137. Poelt J, Steiner M (1971) Uber einige parasitische gelbe arten der flechtengattung Acarospora (Lecanorales, Acarosporaceae). Annalen des Naturhistorischen Museums in Wien 75:163–172Google Scholar
  138. Printzen C, Domaschke S, Fernández-Mendoza F, Pérez-Ortega S (2013) Biogeography and ecology of Cetraria aculeata, a widely distributed lichen with a bipolar distribution. MycoKeys 6:33–53. doi: 10.3897/mycokeys.6.3185 CrossRefGoogle Scholar
  139. Pyatt FB (1968) The occurrence of a rotifer on the surfaces of apothecia of Xanthoria parietina. The Lichenologist 4:74–75CrossRefGoogle Scholar
  140. Pyatt FB (1973) Lichen propagules. In: Ahmadjian V, Hale ME (eds) The lichens. Academic Press, New York, NY, pp 117–145CrossRefGoogle Scholar
  141. Rabosky DL, Grundler M, Anderson C, Title P, Shi JJ, Brown JW, Huang H, Larson JG (2014) BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol Evol 5(7):701–707. doi: 10.1111/2041-210X.12199 CrossRefGoogle Scholar
  142. Ranius T, Johansson P, Berg N, Niklasson M (2008) The influence of tree age and microhabitat quality on the occurrence of crustose lichens associated with old oaks. J Veg Sci 19(5):653–662. doi: 10.3170/2008-8-18433 CrossRefGoogle Scholar
  143. Ree RH, Smith SA (2008) Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst Biol 57(1):4–14PubMedCrossRefGoogle Scholar
  144. Renhorn KE, Esseen P-A, Palmqvist K, Sundberg B (1996) Growth and vitality of epiphytic lichens. Oecologia 109(1):1–9. doi: 10.1007/s004420050051 CrossRefGoogle Scholar
  145. Richardson BA, Meyer SE (2012) Paleoclimate effects and geographic barriers shape regional population genetic structure of blackbrush (Coleogyne ramosissima: Rosaceae). Botany 90(4):293–299. doi: 10.1139/b2012-002 CrossRefGoogle Scholar
  146. Rikkinen J, Oksanen I, Lohtander K (2002) Lichen guilds share related cyanobacterial symbionts. Science 297(5580):357PubMedCrossRefGoogle Scholar
  147. Root HT, McCune B (2012) Regional patterns of biological soil crust lichen species composition related to vegetation, soils, and climate in Oregon, USA. J Arid Environ 79:93–100. doi: 10.1016/j.jaridenv.2011.11.017 CrossRefGoogle Scholar
  148. Rosentreter R (1993) Vagrant lichens in North America. The Bryologist 96(3):333–338CrossRefGoogle Scholar
  149. Rubio-Salcedo M, Martínez I, Carreño F, Escudero A (2013) Poor effectiveness of the Natura 2000 network protecting Mediterranean lichen species. J Nat Conserv 21(1):1–9. doi: 10.1016/j.jnc.2012.06.001 CrossRefGoogle Scholar
  150. Sadowska-Deś AD, Dal Grande F, Lumbsch HT, Beck A, Otte J, Hur J-S, Kim JA, Schmitt I (2014) Integrating coalescent and phylogenetic approaches to delimit species in the lichen photobiont Trebouxia. Mol Phylogenet Evol 76:202–210. doi: 10.1016/j.ympev.2014.03.020 PubMedCrossRefGoogle Scholar
  151. Schei FH, Blom HH, Gjerde I, Grytnes J-A, Heegaard E, Sætersdal M (2012) Fine-scale distribution and abundance of epiphytic lichens: environmental filtering or local dispersal dynamics? J Veg Sci 23(3):459–470. doi: 10.1111/j.1654-1103.2011.01368.x CrossRefGoogle Scholar
  152. Scheidegger C, Werth S (2009) Conservation strategies for lichens: insights from population biology. Fungal Biol Rev 23(3):55–66. doi: 10.1016/j.fbr.2009.10.003 CrossRefGoogle Scholar
  153. Seyd EL, Seaward MRD (1984) The association of oribatid mites with lichens. Zool J Linn Soc 80:369–420CrossRefGoogle Scholar
  154. Shokralla S, Spall JL, Gibson JF, Hajibabaei M (2012) Next-generation sequencing technologies for environmental DNA research. Mol Ecol 21(8):1794–1805. doi: 10.1111/j.1365-294X.2012.05538.x PubMedCrossRefGoogle Scholar
  155. Shrestha G, Peterson SL, St. Clair LL (2012) Predicting the distribution of the air pollution sensitive lichen species Usnea hirta. The Lichenologist 44(04):511–521. doi: 10.1017/S0024282912000060 CrossRefGoogle Scholar
  156. Singh G, Dal Grande F, Werth S, Scheidegger C (2014) Long-term consequences of disturbances on reproductive strategies of the rare epiphytic lichen Lobaria pulmonaria: clonality a gift and a curse. FEMS Microbiol Ecol 91(1):1–11. doi: 10.1093/femsec/fiu009 PubMedGoogle Scholar
  157. Skorepa AC, Sharp AJ (1971) Lichens in ‘packets’ of lacewing larvae (Chrysididae). The Bryologist 74:363–364CrossRefGoogle Scholar
  158. Sork VL, Werth S (2014) Phylogeography of Ramalina menziesii, a widely distributed lichen-forming fungus in western North America. Mol Ecol 23(9):2326–2339. doi: 10.1111/mec.12735 PubMedCrossRefGoogle Scholar
  159. Stubbs CS (1989) Patterns of distribution and abundance of corticolous lichens and their invertebrate associates on Quercus rubra in Maine. The Bryologist 92(4):453–460CrossRefGoogle Scholar
  160. Stubbs CS (1995) Dispersal of soredia by the oribatid mite, Humerobates arborea. Mycologia 87(4):454–458CrossRefGoogle Scholar
  161. Tibell L (2001) Photobiont association and molecular phylogeny of the lichen genus Chaenotheca. The Bryologist 104(2):191–198CrossRefGoogle Scholar
  162. Trail F, Seminara A (2014) The mechanism of ascus firing – merging biophysical and mycological viewpoints. Fungal Biol Rev 28(2–3):70–76. doi: 10.1016/j.fbr.2014.07.002 CrossRefGoogle Scholar
  163. Wagner H, Werth S, Kalwij J, Bolli J, Scheidegger C (2006) Modelling forest recolonization by an epiphytic lichen using a landscape genetic approach. Landsc Ecol 21(6):849–865. doi: 10.1007/s10980-005-5567-7 CrossRefGoogle Scholar
  164. Walser J-C (2004) Molecular evidence for limited dispersal of vegetative propagules in the epiphytic lichen Lobaria pulmonaria. Am J Bot 91(8):1273–1276. doi: 10.3732/ajb.91.8.1273 PubMedCrossRefGoogle Scholar
  165. Walser J-C, Holderegger R, Gugerli F, Hoebee SE, Scheidegger C (2005) Microsatellites reveal regional population differentiation and isolation in Lobaria pulmonaria, an epiphytic lichen. Mol Ecol 14(2):457–467. doi: 10.1111/j.1365-294x.2004.02423.x PubMedCrossRefGoogle Scholar
  166. Waser L, Kuechler M, Schwarz M, Ivits E, Stofer S, Scheidegger C (2007) Prediction of lichen diversity in an UNESCO biosphere reserve – correlation of high resolution remote sensing data with field samples. Environ Model Assess 12(4):315–328. doi: 10.1007/s10666-006-9066-2 CrossRefGoogle Scholar
  167. Werth S (2011) Biogeography and phylogeography of lichen fungi and their photobionts. In: Fontaneto D (ed) Biogeography of microscopic organisms: is everything small everywhere? Cambridge University Press, London, pp 191–208CrossRefGoogle Scholar
  168. Werth S, Sork VL (2010) Identity and genetic structure of the photobiont of the epiphytic lichen Ramalina menziesii on three oak species in southern California. Am J Bot 97(5):821–830. doi: 10.3732/ajb.0900276 PubMedCrossRefGoogle Scholar
  169. Werth S, Sork VL (2014) Ecological specialization in Trebouxia (Trebouxiophyceae) photobionts of Ramalina menziesii (Ramalinaceae) across six range-covering ecoregions of western North America. Am J Bot 101(7):1127–1140. doi: 10.3732/ajb.1400025 PubMedCrossRefGoogle Scholar
  170. Werth S, Tømmervik H, Elvebakk A (2005) Epiphytic macrolichen communities along regional gradients in northern Norway. J Veg Sci 16(2):199–208. doi: 10.1111/j.1654-1103.2005.tb02356.x CrossRefGoogle Scholar
  171. Werth S, Wagner HH, Gugerli F, Holderegger R, Csencsics D, Kalwij JM, Scheidegger C (2006) Quantifying dispersal and establishment limitation in a population of an epiphytic lichen. Ecology 87(8):2037–2046. doi: 10.1890/0012-9658(2006)87[2037:qdaeli]2.0.co;2 PubMedCrossRefGoogle Scholar
  172. Werth S, Gugerli F, Holderegger R, Wagner HH, Csencsics D, Scheidegger C (2007) Landscape-level gene flow in Lobaria pulmonaria, an epiphytic lichen. Mol Ecol 16(13):2807–2815. doi: 10.1111/j.1365-294X.2007.03344.x PubMedCrossRefGoogle Scholar
  173. Werth S, Millanes AM, Wedin M, Scheidegger C (2013) Lichenicolous fungi show population subdivision by host species but do not share population history with their hosts. Fungal Biol 117(1):71–84. doi: 10.1016/j.funbio.2012.11.007 PubMedCrossRefGoogle Scholar
  174. Werth S, Cheenacharoen S, Scheidegger C (2014) Propagule size is not a good predictor for regional population subdivision or fine-scale spatial structure in lichenized fungi. Fungal Biol 118(2):126–138. doi: 10.1016/j.funbio.2013.10.009 PubMedCrossRefGoogle Scholar
  175. Widmer I, Dal Grande F, Excoffier L, Holderegger R, Keller C, Mikryukov VS, Scheidegger C (2012) European phylogeography of the epiphytic lichen fungus Lobaria pulmonaria and its green algal symbiont. Mol Ecol 21(23):5827–5844. doi: 10.1111/mec.12051 PubMedCrossRefGoogle Scholar
  176. Wirtz N, Printzen C, Lumbsch HT (2008) The delimitation of Antarctic and bipolar species of neuropogonoid Usnea (Ascomycota, Lecanorales): a cohesion approach of species recognition for the Usnea perpusilla complex. Mycol Res 112:472–484PubMedCrossRefGoogle Scholar
  177. Wirtz N, Printzen C, Lumbsch HT (2012) Using haplotype networks, estimation of gene flow and phenotypic characters to understand species delimitation in fungi of a predominantly Antarctic Usnea group (Ascomycota, Parmeliaceae). Organ Diver Evol 12(1):17–37. doi: 10.1007/s13127-011-0066-y CrossRefGoogle Scholar
  178. Yahr R, Vilgalys R, Depriest PT (2004) Strong fungal specificity and selectivity for algal symbionts in Florida scrub Cladonia lichens. Mol Ecol 13(11):3367–3378. doi: 10.1111/j.1365-294X.2004.02350.x PubMedCrossRefGoogle Scholar
  179. Yang Z, Rannala B (2006) Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. Mol Biol Evol 23(1):212–226PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Science and EducationThe Field MuseumChicagoUSA
  2. 2.Committee on Evolutionary BiologyUniversity of ChicagoChicagoUSA

Personalised recommendations