Advertisement

Solving the Tree Containment Problem for Genetically Stable Networks in Quadratic Time

  • Philippe Gambette
  • Andreas D. M. Gunawan
  • Anthony Labarre
  • Stéphane Vialette
  • Louxin Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9538)

Abstract

A phylogenetic network is a rooted acyclic digraph whose leaves are labeled with a set of taxa. The tree containment problem is a fundamental problem arising from model validation in the study of phylogenetic networks. It asks to determine whether or not a given network displays a given phylogenetic tree over the same leaf set. It is known to be NP-complete in general. Whether or not it remains NP-complete for stable networks is an open problem. We make progress towards answering that question by presenting a quadratic time algorithm to solve the tree containment problem for a new class of networks that we call genetically stable networks, which include tree-child networks and comprise a subclass of stable networks.

Keywords

Binary Tree Internal Node Tree Node Phylogenetic Network Stable Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The project was financially supported by Merlion Programme 2013.

References

  1. 1.
    Chan, J.M., et al.: Topology of viral evolution. PNAS 110, 18566–18571 (2013)CrossRefMATHGoogle Scholar
  2. 2.
    Cordue, P., Linz, S., Semple, C.: Phylogenetic networks that display a tree twice. Bulletin Math. Biol. 76, 2664–2679 (2014)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Gambette, P., Gunawan, A.D.M., Labarre, A., Vialette, S., Zhang, L.: Locating a tree in a phylogenetic network in quadratic time. In: Przytycka, T.M. (ed.) RECOMB 2015. LNCS, vol. 9029, pp. 96–107. Springer, Heidelberg (2015)Google Scholar
  4. 4.
    Gusfield, D.: ReCombinatorics: The Algorithmics of Ancestral Recombination Graphs and Explicit Phylogenetic Networks. MIT Press, Cambridge (2014)Google Scholar
  5. 5.
    Huson, D.H., Rupp, R., Scornavacca, C.: Phylogenetic Networks. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  6. 6.
    van Iersel, L., Semple, C., Steel, M.: Locating a tree in a phylogenetic network. Inform. Proces. Lett. 110, 1037–1043 (2010)CrossRefGoogle Scholar
  7. 7.
    Kanj, I.A., Nakhleh, L., Than, C., Xia, G.: Seeing the trees and their branches in the network is hard. Theoret. Comput. Sci. 401, 153–164 (2008)CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Nakhleh, L.: Computational approaches to species phylogeny inference and gene tree reconciliation. Trends Ecol. Evol. 28, 719–728 (2013)CrossRefGoogle Scholar
  9. 9.
    Treangen, T.J., Rocha, E.P.: Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes. PLOS Genet. 7, e1001284 (2011)CrossRefGoogle Scholar
  10. 10.
    Wang, L., Zhang, K., Zhang, L.: Perfect phylogenetic networks with recombination. J. Comput. Biol. 8, 69–78 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Philippe Gambette
    • 1
  • Andreas D. M. Gunawan
    • 2
  • Anthony Labarre
    • 1
  • Stéphane Vialette
    • 1
  • Louxin Zhang
    • 2
  1. 1.Université Paris-Est, LIGM (UMR 8049), UPEM, CNRS, ESIEE, ENPCMarne-la-ValléeFrance
  2. 2.Department of MathematicsNational University of SingaporeSingaporeSingapore

Personalised recommendations