International Workshop on Combinatorial Algorithms

Combinatorial Algorithms pp 197-208 | Cite as

Solving the Tree Containment Problem for Genetically Stable Networks in Quadratic Time

  • Philippe Gambette
  • Andreas D. M. Gunawan
  • Anthony Labarre
  • Stéphane Vialette
  • Louxin Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9538)

Abstract

A phylogenetic network is a rooted acyclic digraph whose leaves are labeled with a set of taxa. The tree containment problem is a fundamental problem arising from model validation in the study of phylogenetic networks. It asks to determine whether or not a given network displays a given phylogenetic tree over the same leaf set. It is known to be NP-complete in general. Whether or not it remains NP-complete for stable networks is an open problem. We make progress towards answering that question by presenting a quadratic time algorithm to solve the tree containment problem for a new class of networks that we call genetically stable networks, which include tree-child networks and comprise a subclass of stable networks.

Notes

Acknowledgments

The project was financially supported by Merlion Programme 2013.

References

  1. 1.
    Chan, J.M., et al.: Topology of viral evolution. PNAS 110, 18566–18571 (2013)CrossRefMATHGoogle Scholar
  2. 2.
    Cordue, P., Linz, S., Semple, C.: Phylogenetic networks that display a tree twice. Bulletin Math. Biol. 76, 2664–2679 (2014)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Gambette, P., Gunawan, A.D.M., Labarre, A., Vialette, S., Zhang, L.: Locating a tree in a phylogenetic network in quadratic time. In: Przytycka, T.M. (ed.) RECOMB 2015. LNCS, vol. 9029, pp. 96–107. Springer, Heidelberg (2015)Google Scholar
  4. 4.
    Gusfield, D.: ReCombinatorics: The Algorithmics of Ancestral Recombination Graphs and Explicit Phylogenetic Networks. MIT Press, Cambridge (2014)Google Scholar
  5. 5.
    Huson, D.H., Rupp, R., Scornavacca, C.: Phylogenetic Networks. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  6. 6.
    van Iersel, L., Semple, C., Steel, M.: Locating a tree in a phylogenetic network. Inform. Proces. Lett. 110, 1037–1043 (2010)CrossRefGoogle Scholar
  7. 7.
    Kanj, I.A., Nakhleh, L., Than, C., Xia, G.: Seeing the trees and their branches in the network is hard. Theoret. Comput. Sci. 401, 153–164 (2008)CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Nakhleh, L.: Computational approaches to species phylogeny inference and gene tree reconciliation. Trends Ecol. Evol. 28, 719–728 (2013)CrossRefGoogle Scholar
  9. 9.
    Treangen, T.J., Rocha, E.P.: Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes. PLOS Genet. 7, e1001284 (2011)CrossRefGoogle Scholar
  10. 10.
    Wang, L., Zhang, K., Zhang, L.: Perfect phylogenetic networks with recombination. J. Comput. Biol. 8, 69–78 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Philippe Gambette
    • 1
  • Andreas D. M. Gunawan
    • 2
  • Anthony Labarre
    • 1
  • Stéphane Vialette
    • 1
  • Louxin Zhang
    • 2
  1. 1.Université Paris-Est, LIGM (UMR 8049), UPEM, CNRS, ESIEE, ENPCMarne-la-ValléeFrance
  2. 2.Department of MathematicsNational University of SingaporeSingaporeSingapore

Personalised recommendations