International Workshop on Formal Techniques for Safety-Critical Systems

Formal Techniques for Safety-Critical Systems pp 52-68 | Cite as

What’s Decidable About Parametric Timed Automata?

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 596)


Parametric timed automata (PTA) are a powerful formalism to reason, simulate and formally verify critical real-time systems. After two decades of research on PTA, it is now well-understood that any non-trivial problem studied is undecidable for general PTA. We provide here a survey of decision and computation problems for PTA. On the one hand, bounding time, bounding the number of parameters or the domain of the parameters does not (in general) lead to any decidability. On the other hand, restricting the number of clocks, the use of clocks (compared or not with the parameters), and the use of parameters (e.g., used only as upper or lower bounds) leads to decidability of some problems.


  1. 1.
    Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2), 183–235 (1994)CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Alur, R., Etessami, K., La Torre, S., Peled, D.: Parametric temporal logic for “model measuring”. ACM Trans. Comput. Logic 2(3), 388–407 (2001)CrossRefMATHGoogle Scholar
  3. 3.
    Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: STOC, pp. 592–601. ACM (1993)Google Scholar
  4. 4.
    André, É., Chatain, Th., Encrenaz, E., Fribourg, L.: An inverse method for parametric timed automata. IJFCS 20(5), 819–836 (2009)Google Scholar
  5. 5.
    André, É., Fribourg, L., Kühne, U., Soulat, R.: IMITATOR 2.5: a tool for analyzing robustness in scheduling problems. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 33–36. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    André, É., Lime, D., Roux, O.H.: Integer-complete synthesis for bounded parametric timed automata. In: Bojanczyk, M., Lasota, S., Potapov, I. (eds.) RP 2015. LNCS, vol. 9328, pp. 7–19. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24537-9_2 CrossRefGoogle Scholar
  7. 7.
    André, É., Lime, D., Roux, O.H.: Decision problems for parametric timed automata (submitted, 2016)Google Scholar
  8. 8.
    André, É., Markey, N.: Language preservation problems in parametric timed automata. In: Sankaranarayanan, S., Vicario, E. (eds.) FORMATS 2015. LNCS, vol. 9268, pp. 27–43. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  9. 9.
    Asarin, E., Mysore, V., Pnueli, A., Schneider, G.: Low dimensional hybrid systems – decidable, undecidable, don’t know. Inf. Comput. 211, 138–159 (2012)CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Beneš, N., Bezděk, P., Larsen, K.G., Srba, J.: Language emptiness of continuous-time parametric timed automata. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015, Part II. LNCS, vol. 9135, pp. 69–81. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  11. 11.
    Bérard, B., Haddad, S., Jovanović, A., Lime, D.: Parametric interrupt timed automata. In: Abdulla, P.A., Potapov, I. (eds.) RP 2013. LNCS, vol. 8169, pp. 59–69. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Bouyer, P., Markey, N., Sankur, O.: Robustness in timed automata. In: Abdulla, P.A., Potapov, I. (eds.) RP 2013. LNCS, vol. 8169, pp. 1–18. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Bozzelli, L., La Torre, S.: Decision problems for lower/upper bound parametric timed automata. Formal Meth. Syst. Des. 35(2), 121–151 (2009)CrossRefMATHGoogle Scholar
  14. 14.
    Brihaye, T., Doyen, L., Geeraerts, G., Ouaknine, J., Raskin, J.-F., Worrell, J.: Time-bounded reachability for monotonic hybrid automata: complexity and fixed points. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 55–70. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Bruyère, V., Raskin, J.F.: Real-time model-checking: parameters everywhere. Logical Meth. Comput. Sci. 3(1: 7), 1–30 (2007)Google Scholar
  16. 16.
    Bundala, D., Ouaknine, J.: Advances in parametric real-time reasoning. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part I. LNCS, vol. 8634, pp. 123–134. Springer, Heidelberg (2014)Google Scholar
  17. 17.
    Chevallier, R., Encrenaz-Tiphène, E., Fribourg, L., Xu, W.: Timed verification of the generic architecture of a memory circuit using parametric timed automata. Formal Meth. Syst. Des. 34(1), 59–81 (2009)CrossRefMATHGoogle Scholar
  18. 18.
    Doyen, L.: Robust parametric reachability for timed automata. Inf. Process. Lett. 102(5), 208–213 (2007)CrossRefMathSciNetMATHGoogle Scholar
  19. 19.
    Fanchon, L., Jacquemard, F.: Formal timing analysis of mixed music scores. In: International Computer Music Conference (2013)Google Scholar
  20. 20.
    Fribourg, L., Lesens, D., Moro, P., Soulat, R.: Robustness analysis for scheduling problems using the inverse method. In: TIME, pp. 73–80. IEEE Computer Society Press (2012)Google Scholar
  21. 21.
    Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata? J. Comput. Syst. Sci. 57(1), 94–124 (1998)CrossRefMathSciNetMATHGoogle Scholar
  22. 22.
    Henzinger, T.A., Kopke, P.W., Wong-Toi, H.: The expressive power of clocks. In: Fülöp, Z. (ed.) ICALP 1995. LNCS, vol. 944, pp. 417–428. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  23. 23.
    Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real-time systems. Inf. Comput. 111(2), 193–244 (1994)CrossRefMathSciNetMATHGoogle Scholar
  24. 24.
    Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear parametric model checking of timed automata. JLAP 52–53, 183–220 (2002)MathSciNetGoogle Scholar
  25. 25.
    Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for timed automata. IEEE Trans. Softw. Eng. 41(5), 445–461 (2015)CrossRefGoogle Scholar
  26. 26.
    Jovanović, A.: Parametric verification of timed systems. Ph.D. thesis , École Centrale Nantes, France (2013)Google Scholar
  27. 27.
    Knapik, M., Penczek, W.: Bounded model checking for parametric timed automata. In: Jensen, K., Donatelli, S., Kleijn, J. (eds.) ToPNoC V. LNCS, vol. 6900, pp. 141–159. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  28. 28.
    Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw. Tools Technol. Transfer 1(1–2), 134–152 (1997)CrossRefMATHGoogle Scholar
  29. 29.
    Lime, D., Roux, O.H., Seidner, C., Traonouez, L.-M.: Romeo: a parametric model-checker for petri nets with stopwatches. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 54–57. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  30. 30.
    Miller, J.S.: Decidability and complexity results for timed automata and semi-linear hybrid automata. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, p. 296. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  31. 31.
    Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall Inc., Englewood Cliffs (1967)MATHGoogle Scholar
  32. 32.
    Quaas, K.: MTL-model checking of one-clock parametric timed automata is undecidable. SynCoP. EPTCS 145, 5–17 (2014)CrossRefGoogle Scholar
  33. 33.
    Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: towards flexible verification under fairness. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–714. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  34. 34.
    Wang, T., Sun, J., Wang, X., Liu, Y., Si, Y., Dong, J.S., Yang, X., Li, X.: A systematic study on explicit-state non-zenoness checking for timed automata. IEEE Trans. Softw. Eng. 41(1), 3–18 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS, UMR 7030VilletaneuseFrance
  2. 2.École Centrale de Nantes, IRCCyN, CNRS, UMR 6597NantesFrance

Personalised recommendations