Cryptographers’ Track at the RSA Conference

Topics in Cryptology - CT-RSA 2016 pp 111-126 | Cite as

Short Randomizable Signatures

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9610)

Abstract

Digital signature is a fundamental primitive with numerous applications. Following the development of pairing-based cryptography, several taking advantage of this setting have been proposed. Among them, the Camenisch-Lysyanskaya (CL) signature scheme is one of the most flexible and has been used as a building block for many other protocols. Unfortunately, this scheme suffers from a linear size in the number of messages to be signed which limits its use in many situations.

In this paper, we propose a new signature scheme with the same features as CL-signatures but without the linear-size drawback: our signature consists of only two elements, whatever the message length, and our algorithms are more efficient. This construction takes advantage of using type 3 pairings, that are already widely used for security and efficiency reasons.

We prove the security of our scheme without random oracles but in the generic group model. Finally, we show that protocols using CL-signatures can easily be instantiated with ours, leading to much more efficient constructions.

Notes

Acknowledgments

This work was supported in part by the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013 Grant Agreement no. 339563 – CryptoCloud).

References

  1. 1.
    Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving signatures and commitments to group elements. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Abe, M., Groth, J., Haralambiev, K., Ohkubo, M.: Optimal structure-preserving signatures in asymmetric bilinear groups. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 649–666. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Abe, M., Groth, J., Ohkubo, M., Tango, T.: Converting cryptographic schemes from symmetric to asymmetric bilinear groups. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 241–260. Springer, Heidelberg (2014)Google Scholar
  4. 4.
    Au, M.H., Susilo, W., Mu, Y.: Constant-size dynamic k-TAA. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 111–125. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Baldimtsi, F., Lysyanskaya, A.: Anonymous credentials light. In: Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 1087–1098. ACM Press (2013)Google Scholar
  6. 6.
    Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 480–494. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  7. 7.
    Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62–73. ACM Press (1993)Google Scholar
  8. 8.
    Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Bernhard, D., Fuchsbauer, G., Ghadafi, E., Smart, N.P., Warinschi, B.: Anonymous attestation with user-controlled linkability. Int. J. Inf. Sec. 12(3), 219–249 (2013)CrossRefGoogle Scholar
  10. 10.
    Bichsel, P., Camenisch, J., Neven, G., Smart, N.P., Warinschi, B.: Get shorty via group signatures without encryption. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 381–398. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Boneh, D., Boyen, X.: Short signatures without random Oracles and the SDH assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008)CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Atluri, V., Pfitzmann, B., McDaniel, P. (eds.) ACM CCS 2004, pp. 132–145. ACM Press (2004)Google Scholar
  16. 16.
    Camenisch, J., Groß, T.: Efficient attributes for anonymous credentials. ACM Trans. Inf. Syst. Secur. 15(1), 4 (2012)CrossRefGoogle Scholar
  17. 17.
    Camenisch, J.L., Lysyanskaya, A.: An efficient system for non-transferable anonymous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Camenisch, J.L., Lysyanskaya, A.: A signature scheme with efficient protocols. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Camenisch, J.L., Lysyanskaya, A.: Signature schemes and anonymous credentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Canard, S., Lescuyer, R.: Protecting privacy by sanitizing personal data: a new approach to anonymous credentials. In: Chen, K., Xie, Q., Qiu, W., Li, N., Tzeng, W.G. (eds.) ASIACCS 2013, pp. 381–392. ACM Press (2013)Google Scholar
  21. 21.
    Canard, S., Pointcheval, D., Sanders, O., Traoré, J.: Divisible e-cash made practical. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 77–100. Springer, Heidelberg (2015)Google Scholar
  22. 22.
    Chase, M., Meiklejohn, S., Zaverucha, G.: Algebraic MACs and keyed-verification anonymous credentials. In: Ahn, G.J., Yung, M., Li, N. (eds.) ACM CCS 2014, pp. 1205–1216. ACM Press (2014)Google Scholar
  23. 23.
    Chatterjee, S., Menezes, A.: Typpe 2 structure-preserving signature schemes revisited. Cryptology ePrint Archive, Report 2014/635 (2014). http://eprint.iacr.org/2014/635
  24. 24.
    Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  25. 25.
    Chen, L., Page, D., Smart, N.P.: On the design and implementation of an efficient DAA scheme. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS 2010. LNCS, vol. 6035, pp. 223–237. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  26. 26.
    Delerablée, C., Pointcheval, D.: Dynamic fully anonymous short group signatures. In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 193–210. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  27. 27.
    Desmoulins, N., Lescuyer, R., Sanders, O., Traoré, J.: Direct anonymous attestations with dependent basename opening. In: Gritzalis, D., Kiayias, A., Askoxylakis, I. (eds.) CANS 2014. LNCS, vol. 8813, pp. 206–221. Springer, Heidelberg (2014)Google Scholar
  28. 28.
    Dodis, Y., Kiltz, E., Pietrzak, K., Wichs, D.: Message authentication, revisited. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 355–374. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  29. 29.
    Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete Appl. Math. 156(16), 3113–3121 (2008)CrossRefMathSciNetMATHGoogle Scholar
  30. 30.
    Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)CrossRefMathSciNetMATHGoogle Scholar
  31. 31.
    Groth, J.: Fully anonymous group signatures without random Oracles. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  32. 32.
    Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  33. 33.
    Hinterwälder, G., Zenger, C.T., Baldimtsi, F., Lysyanskaya, A., Paar, C., Burleson, W.P.: Efficient e-cash in practice: NFC-based payments for public transportation systems. In: De Cristofaro, E., Wright, M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 40–59. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  34. 34.
    Joux, A.: A one round protocol for tripartite Diffie-Hellman. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  35. 35.
    Lee, K., Lee, D.H., Yung, M.: Aggregating CL-signatures revisited: extended functionality and better efficiency. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 171–188. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  36. 36.
    Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate signatures and multisignatures without random Oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  37. 37.
    Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential aggregate signatures from trapdoor permutations. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 74–90. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  38. 38.
    Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems (extended abstract). In: Heys, H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  39. 39.
    Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)Google Scholar
  40. 40.
    Pointcheval, D., Sanders, O.: Short randomizable signatures. Cryptology ePrint Archive, Report 2015/525 (2015). http://eprint.iacr.org/2015/525
  41. 41.
    Schnorr, C.-P.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)Google Scholar
  42. 42.
    Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.École Normale Supérieure, CNRS, INRIAPSL Research UniversityParisFrance
  2. 2.DGA-MIBruzFrance

Personalised recommendations