Advertisement

From Stateless to Stateful: Generic Authentication and Authenticated Encryption Constructions with Application to TLS

  • Colin Boyd
  • Britta HaleEmail author
  • Stig Frode Mjølsnes
  • Douglas Stebila
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9610)

Abstract

Authentication and authenticated encryption with associated data (AEAD) are applied in cryptographic protocols to provide message integrity. The definitions in the literature and the constructions used in practice all protect against forgeries, but offer varying levels of protection against replays, reordering, and drops. As a result of the lack of a systematic hierarchy of authentication and AEAD security notions, gaps have arisen in the literature, specifically in the provable security analysis of the Transport Layer Security (TLS) protocol. We present a hierarchy of authentication and AEAD security notions, interpolating between the lowest level of protection (against forgeries) and the highest level (against forgeries, replays, reordering, and drops). We show generically how to construct higher level schemes from a basic scheme and appropriate use of sequence numbers, and apply that to close the gap in the analysis of TLS record layer encryption.

Keywords

Authentication Authenticated encryption with associated data (AEAD) Transport Layer Security (TLS) protocol Secure channels 

References

  1. 1.
    Albrecht, M.R., Paterson, K.G., Watson, G.J.: Plaintext recovery attacks against SSH. In: 2009 IEEE Symposium on Security and Privacy, pp. 16–26. IEEE Computer Society Press, May 2009Google Scholar
  2. 2.
    Badertscher, C., Matt, C., Maurer, U., Rogaway, P., Tackmann, B.: Augmented secure channels and the goal of the TLS 1.3 record layer. Cryptology ePrint Archive, Report 2015/394 (2015). http://eprint.iacr.org/2015/394
  3. 3.
    Bellare, M., Kohno, T., Namprempre, C.: Authenticated encryption in SSH: provably fixing the SSH binary packet protocol. In: Atluri, V. (ed.) CCS 2002, pp. 1–11. ACM Press, November 2002Google Scholar
  4. 4.
    Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Boldyreva, A., Degabriele, J.P., Paterson, K.G., Stam, M.: Security of symmetric encryption in the presence of ciphertext fragmentation. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 682–699. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–474. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2, RFC 5426 (2008). https://tools.ietf.org/html/rfc5426
  8. 8.
    Fischlin, M., Günther, F., Marson, G.A., Paterson, K.G.: Data is a stream: security of stream-based channels. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 545–564. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  9. 9.
    Fleischmann, E., Forler, C., Lucks, S.: McOE: a family of almost foolproof on-line authenticated encryption schemes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 196–215. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption: AEZ and the problem that it solves. Cryptology ePrint Archive, Report 2014/793 (2014). http://eprint.iacr.org/2014/793
  11. 11.
    Hoang, V.T., Reyhanitabar, R., Rogaway, P., Vizár, D.: Online authenticated-encryption and its nonce-reuse misuse-resistance. Cryptology ePrint Archive, Report 2015/189 (2015). http://eprint.iacr.org/2015/189
  12. 12.
    IEEE 802.11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications (2012). http://dx.org/10.1109/IEEESTD.2012.6178212
  13. 13.
    Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 273–293. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Katz, J., Yung, M.: Unforgeable encryption and chosen ciphertext secure modes of operation. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 284–299. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Kent, S.: IP Authentication Header, RFC 4302 (2005). https://tools.ietf.org/html/rfc4302
  16. 16.
    Kohno, T., Palacio, A., Black, J.: Building secure cryptographic transforms, or how to encrypt and MAC. Cryptology ePrint Archive, Report 2003/177 (2003). http://eprint.iacr.org/2003/177
  17. 17.
    Krawczyk, H.: The order of encryption and authentication for protecting communications (or: how secure is SSL?). In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 310–331. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS protocol: a systematic analysis. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 429–448. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  19. 19.
    Lychev, R., Jero, S., Boldyreva, A., Nita-Rotaru, C.: How secure and quick is QUIC? Provable security and performance analyses. In: 2015 IEEE Symposium on Security and Privacy, pp. 214–231. IEEE Computer Society Press, May 2015Google Scholar
  20. 20.
    Maurer, U., Tackmann, B.: On the soundness of authenticate-then-encrypt: formalizing the malleability of symmetric encryption. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) CCS 2010, pp. 505–515. ACM Press, October 2010Google Scholar
  21. 21.
    Namprempre, C.: Secure channels based on authenticated encryption schemes: a simple characterization. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 515–532. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  22. 22.
    Paterson, K.G., Ristenpart, T., Shrimpton, T.: Tag size Does matter: attacks and proofs for the TLS record protocol. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 372–389. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  23. 23.
    Rescorla, E., Modadugu, N.: Datagram Transport Layer Security, RFC 4347 (2006). https://tools.ietf.org/html/rfc4347
  24. 24.
    Rescorla, E., Modadugu, N.: Datagram Transport Layer Security Version 1.2, RFC 6347 (2012). https://tools.ietf.org/html/rfc6347
  25. 25.
    Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.) CCS 2002, pp. 98–107. ACM Press, November 2002Google Scholar
  26. 26.
    Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of operation for efficient authenticated encryption. In: CCS 2001, pp. 196–205. ACM Press, November 2001Google Scholar
  27. 27.
    Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap problem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  28. 28.
    Shrimpton, T.: A characterization of authenticated-encryption as a form of chosen-ciphertext security. Cryptology ePrint Archive, Report 2004/272 (2004). http://eprint.iacr.org/2004/272
  29. 29.
    The Chromium Projects: QUIC, a multiplexed stream transport over UDP. https://www.chromium.org/quic. Accessed 2015

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Colin Boyd
    • 1
  • Britta Hale
    • 1
    Email author
  • Stig Frode Mjølsnes
    • 1
  • Douglas Stebila
    • 2
  1. 1.Norwegian University of Science and Technology, NTNUTrondheimNorway
  2. 2.Queensland University of TechnologyBrisbaneAustralia

Personalised recommendations